[2] J.-P. Aubin, H. Frankowska:
Set-Valued Analysis. Birkhauser, Boston, 1990.
MR 1048347
[3] P. Cardaliaguet:
On the regularity of semipermeable surfaces in control theory with application to the optimal exit-time problem (Part I). SIAM J. Control Optim. 35 (1997), 1638–1652.
DOI 10.1137/S0363012995287295 |
MR 1466920
[4] P. Cardaliaguet:
On the regularity of semipermeable surfaces in control theory with application to the optimal exit-time problem (Part II). SIAM J. Control Optim. 35 (1997), 1653–1671.
DOI 10.1137/S0363012996312155 |
MR 1466921
[5] H. Frankowska:
Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equation. SIAM J. Control Optim. 31 (1993), 257–272.
DOI 10.1137/0331016 |
MR 1200233
[6] H. Frankowska, S. Plaskacz, T. Rze.zuchowski:
Measurable viability theorems and the Hamilton-Jacobi-Bellman equation. J. Differ. Equations 116 (1995), 265–305.
DOI 10.1006/jdeq.1995.1036 |
MR 1318576
[8] J. Jarník, J. Kurzweil:
On conditions for right-hand sides of differential relations. Čas. pěst. mat. 102 (1977), 334–349.
MR 0466702
[9] J. Jarník, J. Kurzweil:
Extension of a Scorza-Dragoni theorem to differential relations and functional-differential relations. Commentationes Mathematicae, Tomus specialis in honorem Ladislai Orlicz, I. Polish Scientific Publishers, Warsaw (1978), 147–158.
MR 0504159
[10] J. Jarník, J. Kurzweil:
Sets of solutions of differential relations. Czechoslovak Math. J. 31 (1981), 554–568.
MR 0631602
[11] J. Jarník, J. Kurzweil:
Integral of multivalued mappings and its connection with differential relations. Čas. pěst. mat. 108 (1983), 8–28.
MR 0694137
[12] P. Krbec, J. Kurzweil:
Kneser’s theorem for multivalued differential delay equations. Čas. pěst. mat. 104 (1979), 1–8.
MR 0523570
[13] A. Leśniewski, T. Rze.zuchowski: Autonomous differential inclusions sharing the families of trajectories. Accepted at Demonstratio Mathematica.
[14] S. Plaskacz, M. Quincampoix:
Representation formulas for Hamilton Jacobi equations related to calculus of variation problems. Topol. Methods Nonlin. Anal. 20 (2002), 85–118.
DOI 10.12775/TMNA.2002.027 |
MR 1940532
[15] K. Przeslawski:
Continuous Selectors. Part I: Linear Selectors. J. Convex Anal. 5 (1998), 249–267.
MR 1670348
[17] T. Rze.zuchowski:
Scorza-Dragoni type theorem for upper semicontinuous multivalued functions. Bull. Acad. Polon. Sc., Sér. Sc. Math. Phys. 28 (1980), 61–66.
MR 0616201 |
Zbl 0459.28007
[19] T. Rze.zuchowski:
On the set where all the solutions satisfy a differential inclusion. Qualitative Theory of Differential Equations, Szeged, 1979, pp. 903–913.
MR 0680625
[20] R. Schneider:
Convex Bodies: The Brunn-Minkowski Theory. Cambridge University Press, Cambridge, 1993.
MR 1216521 |
Zbl 0798.52001
[21] G. Scorza-Dragoni:
Un theorema sulle funzioni continue rispetto ad una e misurabili rispetto ad un’altra variabile. Rendiconti Sem. Mat. Padova 17 (1948), 102–106.
MR 0028385
[22] G. Scorza-Dragoni:
Una applicazione della quasi-continuità semiregolare delle funzioni misurabili rispetto ad una e continue rispetto ad un’altra variabile. Atti Acc. Naz. Lincei 12 (1952), 55–61.
MR 0047123
[23] G. V. Smirnov:
Introduction to the Theory of Differential Inclusions. American Mathematical Society, Providence, Rhode Island, 2002.
MR 1867542 |
Zbl 0992.34001