Article
Keywords:
integral equation; integrable solution; measure of noncompactness
Summary:
We give sufficient conditions for the existence of at least one integrable solution of equation $x(t)=f(t)+\int _{0}^{t} K(t,s)g(s,x(s))\mathrm{d}s$. Our assumptions and proofs are expressed in terms of measures of noncompactness.
References:
[1] N. V. Azbieliev, Z. B. Caliuk:
Ob integralnych nieravienstvach. Matem. Sbornik 56 (1962), 325–342.
MR 0140907
[2] J. Banaś, K. Goebel:
Measure of Noncompactness in Banach Spaces. Marcel Dekker, New York, 1980.
MR 0591679
[6] H. Mönch:
Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces. Nonlinear Anal., Theory Methods Appl. 4 (1980), 985–999.
DOI 10.1016/0362-546X(80)90010-3 |
MR 0586861
[8] S. Szufla:
Appendix to the paper An existence theorem for the Urysohn integral equation in Banach spaces. Commentat. Math. Univ. Carol. 25 (1984), 763–764.
MR 0782024 |
Zbl 0578.45018