Previous |  Up |  Next

Article

Keywords:
integral equation; integrable solution; measure of noncompactness
Summary:
We give sufficient conditions for the existence of at least one integrable solution of equation $x(t)=f(t)+\int _{0}^{t} K(t,s)g(s,x(s))\mathrm{d}s$. Our assumptions and proofs are expressed in terms of measures of noncompactness.
References:
[1] N. V. Azbieliev, Z. B. Caliuk: Ob integralnych nieravienstvach. Matem. Sbornik 56 (1962), 325–342. MR 0140907
[2] J. Banaś, K. Goebel: Measure of Noncompactness in Banach Spaces. Marcel Dekker, New York, 1980. MR 0591679
[3] G. Gripenberg: Unique solutions of some Volterra integral equations. Math. Scand. 48 (1981), 59–67. DOI 10.7146/math.scand.a-11899 | MR 0621417 | Zbl 0463.45002
[4] H. P. Heinz: On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions. Nonlinear Anal., Theory Methods Appl. 7 (1983), 1351–1371. DOI 10.1016/0362-546X(83)90006-8 | MR 0726478 | Zbl 0528.47046
[5] J. Kurzweil: Ordinary Differential Equations. Elsevier, Amsterdam-Oxford, 1986. MR 0929466 | Zbl 0667.34002
[6] H. Mönch: Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces. Nonlinear Anal., Theory Methods Appl. 4 (1980), 985–999. DOI 10.1016/0362-546X(80)90010-3 | MR 0586861
[7] W. Mydlarczyk: The existence of nontrivial solutions of Volterra equations. Math. Scand. 68 (1991), 83–88. DOI 10.7146/math.scand.a-12347 | MR 1124821 | Zbl 0701.45002
[8] S. Szufla: Appendix to the paper An existence theorem for the Urysohn integral equation in Banach spaces. Commentat. Math. Univ. Carol. 25 (1984), 763–764. MR 0782024 | Zbl 0578.45018
Partner of
EuDML logo