Article
Keywords:
irreducible algebraic cone; linear subspace; conjugacy class of a matrix; quadratic form
Summary:
We define the linear capacity of an algebraic cone, give basic properties of the notion and new formulations of certain known results of the Matrix Theory. We derive in an explicit way the formula for the linear capacity of an irreducible component of the zero cone of a quadratic form over an algebraically closed field. We also give a formula for the linear capacity of the cone over the conjugacy class of a “generic” non-nilpotent matrix.
References:
[2] H. Flanders:
On spaces of linear transformations of bounded rank. J. London Math. Soc. 37 (1962), 10–16.
MR 0136618
[3] F. R. Gantmacher:
Théorie des matrices. Dunod, Paris, 1966.
Zbl 0136.00410
[5] M. Gerstenhaber:
On nilalgebras and linear varieties of nilpotent matrices, IV. Ann. Math. 75 (1962), 382–418.
MR 0171815 |
Zbl 0112.26403
[9] R. Re:
A note on linear subspaces of determinantal varieties. Le Matematiche 50 (1995), 173–178.
MR 1373578 |
Zbl 0861.14045
[11] M. Skrzyński: Rank functions of matrices. Univ. Iagell. Acta Math. 37 (1999), 139–149.
[12] M. Skrzyński:
On ${\mathcal GL}_n$-invariant cones of matrices with small stable ranks. Demonstratio Math. 33 (2000), 243–254.
MR 1769417