Title:
|
A note on the $a$-Browder’s and $a$-Weyl’s theorems (English) |
Author:
|
Amouch, M. |
Author:
|
Zguitti, H. |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
133 |
Issue:
|
2 |
Year:
|
2008 |
Pages:
|
157-166 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $T$ be a Banach space operator. In this paper we characterize $a$-Browder’s theorem for $T$ by the localized single valued extension property. Also, we characterize $a$-Weyl’s theorem under the condition $E^a(T)=\pi ^a(T),$ where $E^a(T)$ is the set of all eigenvalues of $T$ which are isolated in the approximate point spectrum and $\pi ^a(T)$ is the set of all left poles of $T.$ Some applications are also given. (English) |
Keyword:
|
B-Fredholm operator |
Keyword:
|
Weyl’s theorem |
Keyword:
|
Browder’s thoerem |
Keyword:
|
operator of Kato type |
Keyword:
|
single-valued extension property |
MSC:
|
47A10 |
MSC:
|
47A11 |
MSC:
|
47A53 |
idZBL:
|
Zbl 1199.47067 |
idMR:
|
MR2428311 |
DOI:
|
10.21136/MB.2008.134059 |
. |
Date available:
|
2009-09-24T22:35:43Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134059 |
. |
Reference:
|
[1] P. Aiena: Fredholm Theory and Local Spectral Theory, with Applications to Multipliers.Kluwer Academic Publishers, 2004. MR 2070395 |
Reference:
|
[2] P. Aiena, O. Monsalve: Operators which do not have the single valued extension property.J. Math. Anal. Appl. 250 (2000), 435–448. MR 1786074, 10.1006/jmaa.2000.6966 |
Reference:
|
[3] M. Amouch: Weyl type theorems for operators satisfying the single-valued extension property.J. Math. Anal. Appl. 326 (2007), 1476–1484. Zbl 1117.47007, MR 2280999, 10.1016/j.jmaa.2006.03.085 |
Reference:
|
[4] M. Amouch: Generalized $a$-Weyl’s theorem and the single-valued extension property.Extracta. Math. 21 (2006), 51–65. Zbl 1123.47005, MR 2258341 |
Reference:
|
[5] M. Amouch, H. Zguitti: On the equivalence of Browder’s and generalized Browder’s theorem.Glasgow Math. J. 48 (2006), 179–185. MR 2224938, 10.1017/S0017089505002971 |
Reference:
|
[6] M. Berkani, N. Castro, S. V. Djordjevic: Single valued extension property and generalized Weyl’s theorem.Math. Bohem. 131 (2006), 29–38. MR 2211001 |
Reference:
|
[7] M. Berkani, A. Arroud: Generalized Weyl’s theorem and hyponormal operators.J. Aust. Math. Soc. 76 (2004), 291–302. MR 2041251, 10.1017/S144678870000896X |
Reference:
|
[8] M. Berkani, J. J. Koliha: Weyl type theorems for bounded linear operators.Acta Sci. Math. (Szeged) 69 (2003), 359–376. MR 1991673 |
Reference:
|
[9] M. Berkani, M. Sarih: On semi B-Fredholm operators.Glasgow Math. J. 43 (2001), 457–465. MR 1878588 |
Reference:
|
[10] S. V. Djordjević, Y. M. Han: Browder’s theorems and spectral continuity.Glasgow Math. J. 42 (2000), 479–486. MR 1793814, 10.1017/S0017089500030147 |
Reference:
|
[11] B. P. Duggal: Hereditarily normaloid operators.Extracta Math. 20 (2005), 203–217. Zbl 1160.47301, MR 2195202 |
Reference:
|
[12] J. K. Finch: The single valued extension property on a Banach space.Pacific J. Math. 58 (1975), 61–69. Zbl 0315.47002, MR 0374985, 10.2140/pjm.1975.58.61 |
Reference:
|
[13] S. Grabiner: Uniform ascent and descent of bounded operators.J. Math. Soc. Japan 34 (1982), 317–337. Zbl 0477.47013, MR 0651274, 10.2969/jmsj/03420317 |
Reference:
|
[14] Y. M. Han, W. Y. Lee: Weyl’s theorem holds for algebraically hyponormal operators.Proc. Amer. Math. Soc. 128 (2000), 2291–2296. MR 1756089, 10.1090/S0002-9939-00-05741-5 |
Reference:
|
[15] Y. M. Han, S. V. Djordjević: A note on $a$-Weyl’s theorem.J. Math. Anal. Appl. 260 (2001), 200–213. MR 1843976, 10.1006/jmaa.2001.7448 |
Reference:
|
[16] J. J. Koliha: Isolated spectral points.Proc. Amer. Math. Soc. 124 (1996), 3417–3424. Zbl 0864.46028, MR 1342031, 10.1090/S0002-9939-96-03449-1 |
Reference:
|
[17] K. B. Laursen: Operators with finite ascent.Pacific. Math. J. 152 (1992), 323–336. Zbl 0783.47028, MR 1141799, 10.2140/pjm.1992.152.323 |
Reference:
|
[18] K. B. Laursen, M. M. Neumann: An Introduction to Local Spectral Theory.Clarendon, Oxford, 2000. MR 1747914 |
Reference:
|
[19] D. C. Lay: Spectral analysis using ascent, descent, nullity and defect.Math. Ann. 184 (1970), 197–214. Zbl 0177.17102, MR 0259644, 10.1007/BF01351564 |
Reference:
|
[20] M. Mbekhta: Généralisation de la décomposition de Kato aux opérateurs paranormaux et spectraux.Glasgow Math. J. 29 (1987), 159–175. Zbl 0657.47038, MR 0901662, 10.1017/S0017089500006807 |
Reference:
|
[21] M. Mbekhta: Résolvant généralisé et théorie spectrale.J. Operator Theory 21 (1989), 69–105. Zbl 0694.47002, MR 1002122 |
Reference:
|
[22] M. Mbekhta, V. Müler: On the axiomatic theory of the spectrum II.Studia Math. 119 (1996), 129–147. MR 1391472, 10.4064/sm-119-2-129-147 |
Reference:
|
[23] M. Oudghiri: Weyl’s and Browder’s theorem for operators satisfying the SVEP.Studia Math. 163 (2004), 85–101. MR 2047466, 10.4064/sm163-1-5 |
Reference:
|
[24] V. Rakočević: On the essential approximate point spectrum II.Mat. Vesnik 36 (1984), 89–97. MR 0880647 |
Reference:
|
[25] V. Rakočević: Approximate point spectrum and commuting compact perturbations.Glasgow Math. J. 28 (1986), 193–198. MR 0848425, 10.1017/S0017089500006509 |
Reference:
|
[26] V. Rakočević: Operators obeying $a$-Weyl’s theorem.Rev. Roumaine Math. Pures Appl. 34 (1989), 915–919. MR 1030982 |
Reference:
|
[27] H. Weyl: Über beschränkte quadratische Formen, deren Differenz vollstetig ist.Rend. Circ. Mat. Palermo 27 (1909), 373–392. 10.1007/BF03019655 |
Reference:
|
[28] H. Zguitti: A note on generalized Weyl’s theorem.J. Math. Anal. Appl. 324 (2006), 992–1005. Zbl 1101.47002, MR 2201769 |
. |