[1] R. Balbes, P. Dwinger:
Distributive Lattices. University of Missouri Press, Columbia, 1974.
MR 0373985
[2] R. L. O. Cignoli, I. M. L. D’Ottawiano, D. Mundici: Algebraic Foundations of Many-Valued Reasoning. Kluwer, Dordrecht, 2000.
[3] A. Di Nola, G. Georgescu, A. Iorgulescu:
Pseudo $BL$-algebras: Part I. Mult. Valued Log. 8 (2002), 673–714.
MR 1948853
[4] A. Di Nola, G. Georgescu, A. Iorgulescu:
Pseudo $BL$-algebras: Part II. Mult. Valued Log. 8 (2002), 717–750.
MR 1948854
[6] G. Georgescu, A. Iorgulescu:
Pseudo $MV$-algebras. Mult. Valued Log. 6 (2001), 95–135.
MR 1817439
[8] P. Hájek:
Metamathematics of Fuzzy Logic. Kluwer, Dordrecht, 1998.
MR 1900263
[10] T. Kovář: A General Theory of Dually Residuated Lattice Ordered Monoids. Ph.D. Thesis, Palacký Univ., Olomouc, 1996.
[11] J. Kühr: Ideals of non-commutative $DR\ell $-monoids. (to appear).
[12] J. Kühr:
Prime ideals and polars in $DR\ell $-monoids and pseudo $BL$-algebras. Math. Slovaca 53 (2003), 233–246.
MR 2025020
[13] J. Rachůnek:
Spectra of autometrized lattice algebras. Math. Bohem. 123 (1998), 87–94.
MR 1618727
[14] J. Rachůnek:
$MV$-algebras are categorically equivalent to a class of $DR\ell _{1(i)}$-semigroups. Math. Bohem. 123 (1998), 437–441.
MR 1667115
[15] J. Rachůnek:
A duality between algebras of basic logic and bounded representable $DR\ell $-monoids. Math. Bohem. 126 (2001), 561–569.
MR 1970259
[18] J. T. Snodgrass, C. Tsinakis:
Finite-valued algebraic lattices. Algebra Univers. 30 (1993), 311–318.
MR 1225870