[2] Chang, C. C.:
A new proof of the completeness of the Łukasiewicz axioms. Trans. Amer. Math. Soc. 93 (1959), 74–80.
MR 0122718 |
Zbl 0093.01104
[3] Cignoli, R. O. L., D’Ottaviano, I. M. L., Mundici, D.:
Algebraic Foundations of Many -Valued Reasoning. Kluwer Acad. Publ., Dordrecht, 2000.
MR 1786097
[4] Dvurečenskij, A., Pulmannová, S.:
New Trends in Quantum Structures. Kluwer Acad. Publ., Dordrecht, 2000.
MR 1861369
[5] Georgescu, G., Iorgulescu, A.:
Pseudo-$MV$-algebras. Multiple Valued Logic 6 (2001), 95–135.
MR 1817439
[6] Kovář, T.: A General Theory of Dually Residuated Lattice Ordered Monoids. Ph.D. Thesis Palacký University, Olomouc, 1996.
[8] Rachůnek, J.:
$MV$-algebras are categorically equivalent to a class of DR$l_{1(i)}$-semigroups. Math. Bohem. 123 (1998), 437–441.
MR 1667115
[11] Rachůnek, J., Švrček, F.:
$MV$-algebras with additive closure operators. Acta Univ. Palacki., Mathematica 39 (2000), 183–189.
MR 1826361
[12] Rasiowa, H., Sikorski, R.:
The Mathematics of Metamathematics. Panstw. Wyd. Nauk., Warszawa, 1963.
MR 0163850