Previous |  Up |  Next

Article

Keywords:
$MV$-algebra; DRl-monoid
Summary:
Closure $GMV$-algebras are introduced as a commutative generalization of closure $MV$-algebras, which were studied as a natural generalization of topological Boolean algebras.
References:
[1] Chang, C. C.: Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc. 88 (1958), 467–490. DOI 10.1090/S0002-9947-1958-0094302-9 | MR 0094302 | Zbl 0084.00704
[2] Chang, C. C.: A new proof of the completeness of the Łukasiewicz axioms. Trans. Amer. Math. Soc. 93 (1959), 74–80. MR 0122718 | Zbl 0093.01104
[3] Cignoli, R. O. L., D’Ottaviano, I. M. L., Mundici, D.: Algebraic Foundations of Many -Valued Reasoning. Kluwer Acad. Publ., Dordrecht, 2000. MR 1786097
[4] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer Acad. Publ., Dordrecht, 2000. MR 1861369
[5] Georgescu, G., Iorgulescu, A.: Pseudo-$MV$-algebras. Multiple Valued Logic 6 (2001), 95–135. MR 1817439
[6] Kovář, T.: A General Theory of Dually Residuated Lattice Ordered Monoids. Ph.D. Thesis Palacký University, Olomouc, 1996.
[7] Rachůnek, J.: DRl-semigroups and $MV$-algebras. Czechoslovak Math. J. 48 (1998), 365–372. DOI 10.1023/A:1022801907138 | MR 1624268
[8] Rachůnek, J.: $MV$-algebras are categorically equivalent to a class of DR$l_{1(i)}$-semigroups. Math. Bohem. 123 (1998), 437–441. MR 1667115
[9] Rachůnek, J.: A non-commutative generalization of $MV$-algebras. Czechoslovak Math. J. 52 (2002), 255–273. DOI 10.1023/A:1021766309509 | MR 1905434 | Zbl 1012.06012
[10] Rachůnek, J.: Prime spectra of non-commutative generalizations of $MV$-algebras. Algebra Univers. 48 (2002), 151–169. DOI 10.1007/PL00012447 | MR 1929902 | Zbl 1058.06015
[11] Rachůnek, J., Švrček, F.: $MV$-algebras with additive closure operators. Acta Univ. Palacki., Mathematica 39 (2000), 183–189. MR 1826361
[12] Rasiowa, H., Sikorski, R.: The Mathematics of Metamathematics. Panstw. Wyd. Nauk., Warszawa, 1963. MR 0163850
[13] Swamy, K. L. N.: Dually residuated lattice ordered semigroups. Math. Ann. 159 (1965), 105–114. DOI 10.1007/BF01360284 | MR 0183797 | Zbl 0138.02104
Partner of
EuDML logo