Article
Keywords:
functional; orthogonally additive functional; two-norm space; function of bounded variation; Henstock integral; Stieltjes integral
Summary:
In this paper we give a representation theorem for the orthogonally additive functionals on the space $BV$ in terms of a non-linear integral of the Henstock-Kurzweil-Stieltjes type.
References:
[1] J. Dieudonné:
Foundations of Modern Analysis. Academic Press, N. Y., 1960.
MR 0120319
[2] D. Franková:
Regulated functions. Math. Bohem. 116 (1991), 20–59.
MR 1100424
[3] T. H. Hildebrandt:
Linear continuous functionals on the space $(BV)$ with weak topologies. Proc. Amer. Math. Soc. 17 (1966), 658–664.
MR 0193490 |
Zbl 0152.13604
[5] P. Y. Lee, R. Výborný:
The Integral: An Easy Approach after Kurzweil and Henstock. Cambridge University Press, 2000.
MR 1756319
[7] M. Tvrdý:
Linear bounded functionals on the space of regular regulated functions. Tatra Mt. Math. Publ. 8 (1996), 203–210.
MR 1475282
[8] A. Zygmund:
Trigonometric Series I and II. Cambridge University Press, 1977.
MR 0617944