[1] Anderson, M., Feil, T.:
Lattice-Ordered Groups. D. Reidel Publ., Dordrecht, 1988.
MR 0937703
[2] Balbes, R., Dwinger, P.:
Distributive Lattices. Univ. of Missouri Press, Columbia, Missouri, 1974.
MR 0373985
[3] Bigard, A., Keimel, K., Wolfenstein, S.:
Groupes et Anneaux Réticulés. Springer, Berlin, 1977.
MR 0552653
[5] Cignoli, R. O. L., D’Ottaviano, I. M. L., Mundici, D.:
Algebraic Foundations of Many-Valued Reasoning. Kluwer Acad. Publ., Dordrecht, 2000.
MR 1786097
[6] Di Nola, A., Georgescu, G., Sessa, S.:
Closed ideals of $MV$-algebras. Advances in Contemporary Logic and Computer Science, Contemp. Math., vol. 235, AMS, Providence, 1999, pp. 99–112.
MR 1721208
[7] Dvurečenskij, A., Pulmannová, S.:
New Trends in Quantum Structures. Kluwer Acad. Publ., Dordrecht, 2000.
MR 1861369
[9] Georgescu, G., Iorgulescu, A.: Pseudo-$MV$ algebras: A non-commutative extension of $MV$-algebras. Proc. Fourth Inter. Symp. Econ. Inform., May 6–9, 1999, INFOREC Printing House, Bucharest, 1999, pp. 961–968.
[10] Georgescu, G., Iorgulescu, A.:
Pseudo-$MV$ algebras. Multiple Valued Logic 6 (2001), 95–135.
MR 1817439
[14] Monteiro, A.:
L’arithmétique des filtres et les espaces topologiques. De Segundo Symp. Mathematicas-Villavicencio, Mendoza, Buenos Aires, 1954, pp. 129–162.
MR 0074805 |
Zbl 0058.38503
[15] Monteiro, A.: L’arithmétique des filtres et les espaces topologiques I–II. Notas de Logica Mathematica, vol. 29–30, 1974.
[16] Paseka, J.:
Linear finitely separated objects of subcategories of domains. Math. Slovaca 46 (1996), 457–490.
MR 1451036 |
Zbl 0890.06007
[19] Rachůnek, J.:
Radicals in non-commutative generalizations of $MV$-algebras. Math. Slovaca 52 (2002), 135–144.
MR 1935113 |
Zbl 1008.06011
[20] Snodgrass, J. T., Tsinakis, C.:
The finite basis theorem for relative normal lattices. Algebra Universalis 33 (1995), 40–67.
DOI 10.1007/BF01190765 |
MR 1303631