[3] Y. Benyamini, J. Lindenstauss: Geometric Nonlinear Functional Analysis Vol. I. Colloqium publications (American Mathematical Society) no. 48, Providence, 2000.
[4] P. Cannarsa, C. Sinestrari:
Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control. Birkhäuser, Boston, 2004.
MR 2041617
[6] S. V. Konyagin:
On points of existence and nonuniqueness of elements of best approximation. Theory of Functions and Its Applications, P.L. Ul’yanov ed., Izdat. Moskov. Univ. 1986, pp. 34–43. (Russian)
MR 0990961
[7] J. Lindenstrauss, D. Preiss:
Fréchet Differentiability of Lipschitz Functions (a survey). Recent Progress in Functional Analysis, Elsevier, 2001.
MR 1861745
[10] D. Pavlica:
On the points of non-differentiability of convex functions. Comment. Math. Univ. Carolin. 45 (2004), 727–734.
MR 2103086 |
Zbl 1100.26006
[11] R. R. Phelps:
Gaussian null sets and differentiability of Lipschitz maps on Banach spaces. Pacific J. Math. 18 (1978), 523–531.
MR 0510938
[12] R. R. Phelps:
Convex Functions, Monotone Operators and Differentiability. Second edition, Lecture Notes in Math. 1364, Springer, Berlin, 1993.
MR 1238715 |
Zbl 0921.46039
[14] D. Preiss, L. Zajíček:
Fréchet differentiation of convex functions in a Banach space with a separable dual. Proc. Amer. Math. Soc. 91 (1984), 202–204.
MR 0740171
[15] D. Preiss, L. Zajíček:
Stronger estimates of smallness of sets of Fréchet nondifferentiability of convex functions. Rend. Circ. Mat. Palermo (2), Suppl. no. 3 (1984), 219–223.
MR 0744387
[17] Yu. G. Reshetnyak:
On a generalization of convex surfaces. Mat. Sbornik 40 (1956), 381–398. (Russian)
MR 0083757
[18] L. Veselý, L. Zajíček:
Delta-convex mappings between Banach spaces and applications. Dissertationes Math. (Rozprawy Mat.) 289 (1989).
MR 1016045
[19] L. Zajíček:
On the differentiation of convex functions in finite and infinite dimensional spaces. Czechoslovak Math. J. 29 (1979), 340–348.
MR 0536060
[20] L. Zajíček:
On $\sigma $-porous sets in abstract spaces. Abstr. Appl. Anal. 2005 (2005), 509–534.
MR 2201041 |
Zbl 1098.28003