Previous |  Up |  Next

Article

Title: Sequential convergences on generalized Boolean algebras (English)
Author: Jakubík, Ján
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 127
Issue: 1
Year: 2002
Pages: 1-14
Summary lang: English
.
Category: math
.
Summary: In this paper we investigate convergence structures on a generalized Boolean algebra and their relations to convergence structures on abelian lattice ordered groups. (English)
Keyword: generalized Boolean algebra
Keyword: abelian lattice ordered group
Keyword: sequential convergence
Keyword: elementary Carathéodory functions
MSC: 06E15
MSC: 06E99
MSC: 06F20
MSC: 11B99
idZBL: Zbl 0999.06013
idMR: MR1895241
DOI: 10.21136/MB.2002.133980
.
Date available: 2009-09-24T21:57:09Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/133980
.
Reference: [1] C. Gofman: Remarks on lattice ordered groups and vector lattices, I, Carathéodory functions.Trans. Amer. Math. Soc. 88 (1958), 107–120. MR 0097331
Reference: [2] M. Harminc: Sequential convergences on abelian lattice-ordered groups.Convergence structures, 1984, Math. Research, Band vol. 24, Akademie Verlag, Berlin, 1985, pp. 153–158. Zbl 0581.06009, MR 0835480
Reference: [3] M. Harminc: The cardinality of the system of all sequential convergences on an abelian lattice ordered group.Czechoslovak Math. J. 37 (1987), 533–546. MR 0913986
Reference: [4] J. Jakubík: Cardinal properties of lattice ordered groups.Fundamenta Math. 74 (1972), 85–98. MR 0302528, 10.4064/fm-74-2-85-98
Reference: [5] J. Jakubík: Sequential convergences in Boolean algebras.Czechoslovak Math. J. 38 (1988), 520–530. MR 0950306
Reference: [6] J. Jakubík: Lattice ordered groups having a largest convergence.Czechoslovak Math. J. 39 (1989), 717–729. MR 1018008
Reference: [7] J. Jakubík: Convergences and higher degrees of distributivity of lattice ordered groups and of Boolean algebras.Czechoslovak Math. J. 40 (1990), 453–458. MR 1065024
Reference: [8] J. Jakubík: Sequential convergences on $MV$-algebras.Czechoslovak Math. J. 45 (1995), 709–726. MR 1354928
Reference: [9] J. Jakubík: Disjoint sequences in Boolean algebras.Math. Bohem. 123 (1998), 411–418. MR 1667113
Reference: [10] H. Löwig: Intrinsic topology and completion of Boolean rings.Ann. Math. 43 (1941), 1138–1196. MR 0006494
Reference: [11] J. Novák, M. Novotný: On the convergence in $\sigma $-algebras of point-sets.Czechoslovak Math. J. 3 (1953), 291–296.
Reference: [12] F. Papangelou: Order convergence and topological completion of commutative lattice-groups.Math. Ann. 155 (1964), 81–107. Zbl 0131.02601, MR 0174498, 10.1007/BF01344076
.

Files

Files Size Format View
MathBohem_127-2002-1_1.pdf 325.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo