Previous |  Up |  Next

Article

Title: On weakly measurable stochastic processes and absolutely summing operators (English)
Author: Marraffa, V.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 131
Issue: 4
Year: 2006
Pages: 379-391
Summary lang: English
.
Category: math
.
Summary: A characterization of absolutely summing operators by means of McShane integrable stochastic processes is considered. (English)
Keyword: Pettis integral
Keyword: McShane integral
Keyword: amart
Keyword: uniform amart
Keyword: absolutely summing operators
MSC: 28B05
MSC: 46N30
MSC: 47B10
MSC: 60G48
idZBL: Zbl 1108.60038
idMR: MR2273929
DOI: 10.21136/MB.2006.133972
.
Date available: 2009-09-24T22:27:34Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/133972
.
Reference: [1] A. Bellow: Uniform amarts: a class of asymptotic martingales for which strong almost sure convergence obtains.Z. Wahrscheinlichkeitstheor. Verw. Geb. 41 (1978), 177–191. Zbl 0391.60005, MR 0471065, 10.1007/BF00534238
Reference: [2] J. K. Brooks: Representations of weak and strong integrals in Banach spaces.Proc. Nat. Acad. Sci. U.S.A. 63 (1969), 266–279. Zbl 0186.20302, MR 0274697, 10.1073/pnas.63.2.266
Reference: [3] N. Dunford, J. T. Schwartz: Linear Operators.Part I, Interscience, New York, 1958.
Reference: [4] G. A. Edgar, L. Sucheston: Stopping Times and Directed Sets.Cambridge University Press, New York, 1992. MR 1191395
Reference: [5] L. Egghe: Convergence of adapted sequences of Pettis-integrable functions.Pacific J. Math. 114 (1984), 345–366. Zbl 0514.46028, MR 0757506, 10.2140/pjm.1984.114.345
Reference: [6] D. H. Fremlin: The generalized McShane integral.Illinois J. Math. 39 (1995), 39–67. Zbl 0810.28006, MR 1299648, 10.1215/ijm/1255986628
Reference: [7] N. Ghoussoub: Summability and vector amarts.J. Multivariate Anal. 9 (1979), 173–178. Zbl 0407.60043, MR 0530649, 10.1016/0047-259X(79)90076-9
Reference: [8] R. A. Gordon: The McShane integral of Banach-valued functions.Illinois J. Math. 34 (1990), 557–567. Zbl 0685.28003, MR 1053562, 10.1215/ijm/1255988170
Reference: [9] Luu Dinh Quang: Convergence of Banach-space-valued martingale-like sequences of Pettis-integrable functions.Bull. Polish Acad. Sci. Math. 45 (1997), 233–245. Zbl 0892.60009, MR 1477541
Reference: [10] V. Marraffa: A characterization of absolutely summing operators by means of McShane integrable functions.J. Math. Anal. Appl. 293/1 (2004), 71–78. Zbl 1087.47023, MR 2052532, 10.1016/j.jmaa.2003.12.029
Reference: [11] V. Marraffa: Stochastic processes of vector valued Pettis and McShane integrable functions.Folia Mathematica 11 (2005). Zbl 1125.60040, MR 2282634
Reference: [12] K. Musial: Martingales of Pettis integrable functions.Lect. Notes Math., Springer 794 (1980), 324–339. Zbl 0433.28010, MR 0577981, 10.1007/BFb0088234
Reference: [13] K. Musial: Topics in the theory of Pettis integration.Rend. Istit. Mat. Univ. Trieste 23 (1991), 177–262. Zbl 0798.46042, MR 1248654
Reference: [14] J. Rodriguez: Absolutely summig operators and integration of vector-valued functions.J. Math. Anal. Appl. 316 (2006), 579–600. MR 2207332, 10.1016/j.jmaa.2005.05.001
Reference: [15] C. Swartz: Beppo Levi’s theorem for vector valued McShane integral and applications.Bull. Belg. Math. Soc. 4 (1997), 589–599. MR 1600292, 10.36045/bbms/1105737762
Reference: [16] M. Talagrand: Pettis Integral and Measure Theory.vol. 51, Memoirs A.M.S., 1984. Zbl 0582.46049, MR 0756174
Reference: [17] J. J. Uhl, Jr.: Martingales of strongly measurable Pettis integrable functions.Trans. Amer. Math. Soc. 167 (1972), 369–378. Zbl 0249.60025, MR 0293708, 10.1090/S0002-9947-1972-0293708-X
.

Files

Files Size Format View
MathBohem_131-2006-4_4.pdf 337.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo