[1] Algebra. Purkyně University, Brno, 1981, text-book. (Czech)
[2] Universální algebra a teorie svazů. SPN, Praha, 1988, text-book (with L. Bican). (Czech)
[3]
Locally presentable and accessible categories. Cambridge University Press, Cambridge, 1994, monograph.
MR 1294136 |
Zbl 0795.18007
[2]
On the existence of graphs with a certain ordering of vertices. Arch. Math., Brno 6 (1970), 89–113.
MR 0294162
[3]
Relative Komplemente im Verband der $T_1$-Topologien. Publ. Fac. Sci. Univ, Brno 518, 1970, pp. 445–460.
MR 0289382
[4]
Topologies compatible with the ordering. Publ. Fac. Sci. Univ, Brno, 1971, pp. 9–23.
MR 0326682
[5]
On a characterization of the lattice of $m$-ideals of an ordered set. Arch. Math., Brno 8 (1972), 137–142.
MR 0335375
[6]
Full embeddings with a given restriction. Comment. Math. Univ. Carol. 14 (1973), 519–540.
MR 0327866 |
Zbl 0267.18007
[7]
Strong embeddings into categories of algebras over a monad I. Comment. Math. Univ. Carol. 14 (1973), 699–718.
MR 0330257 |
Zbl 0269.18002
[8]
Realizations of topologies by set-systems. Coll. Math. Soc. J. Bolyai 8. Topics in Topology, Keszthely, 1972, pp. 535–553.
MR 0355945
[9]
Embeddings of lattices in the lattice of topologies. Arch. Math., Brno 9 (1973), 49–56.
MR 0372803
[10]
Strong embeddings into categories of algebras over monad II. Comment. Math. Univ. Carol. 15 (1974), 131–147.
MR 0342583
[11]
Remarks on topologies uniquely determined by their continuous self maps. Czech. Math. J. 24 (1974), 373–377.
MR 0348697 |
Zbl 0331.54003
[13]
Preservation of topological properties by automorphisms of the lattice of topologies. Publ. Fac. Sci. Univ, Brno, 1974, pp. 59–62.
MR 0397639 |
Zbl 0376.54002
[14]
Sublattices of the lattice of topologies. Acta Fac. Rer. Natur. Univ. Comenian., Math, 1975, pp. 39–41.
MR 0353230 |
Zbl 0292.54004
[15]
On extensions of full embeddings and binding categories. Comment. Math. Univ. Carol. 15 (1974), 631–653.
MR 0354805 |
Zbl 0291.18005
[18]
Modular, distributive and simple intervals of the lattice of topologies. Arch. Math., Brno 11 (1975), 105–114.
MR 0410621
[20]
One example concerning testing categories. Comment. Math. Univ. Carol. 18 (1977), 71–75.
MR 0432730 |
Zbl 0355.18007
[22]
Liftings of functors in topological situations. Proc. 4th Prague Toposym, Praha, 1977, pp. 394–400.
MR 0482623 |
Zbl 0372.54004
[23] 2-categorical tools in the theory of concrete categories. Abstr. 5th Winter School on Abstract Analysis, Praha, 1977, pp. 95–99.
[24]
Extensions of functors and their applications. Cah. Topologie Géom. Différ. 19 (1978), 179–219.
MR 0528346 |
Zbl 0393.18002
[26]
An algebraic description of ordinals. Diagrammes 2 (1979).
Zbl 0515.03028
[28] On algebraic categories. Coll. Math. Soc. J. Bolyai 29, Universal Algebra, Budapest, 1981, pp. 662–690.
[29]
Implicit operations on finite algebras. Coll. Math. Soc. J. Bolyai 28, Budapest, 1981, pp. 653–668.
MR 0648638 |
Zbl 0478.08002
[32] Does $\exp (X)$ exist for a proper class $X$? Abstr. 8th Winter School on Abstract Anal, Praha, 1982, pp. 138–142.
[33] Categories of models of languages $ L_{\kappa \lambda } (\mu )$. Abstr. 9th Winter School on Abstract Anal, Praha, 1982, pp. 153–157.
[34]
Categories of models. Seminarberichte Fernuniversität Hagen 19, 1984, pp. 377–413.
Zbl 0563.03017
[37]
$T_1$-locales. Math. Proc. Camb. Phil. Soc. 98 (1985), 81–86.
MR 0789721
[41]
A categorical characterization of sets among classes. Arch. Math., Brno 23 (1987), 117–121.
MR 0930328 |
Zbl 0632.18003
[43]
Essentially equational categories. Cah. Topologie Géom. Différ. Catég. 29 (1988), 175–192.
MR 0975371 |
Zbl 0659.18010
[44]
Are all limit closed subcategories of locally presentable categories reflective. Categorical Algebra and its Applications, Lect. Notes Math. 1348, 1988, pp. 1–18.
MR 0975956 |
Zbl 0668.18004
[45]
Orthogonal and prereflective subcategories. Cah. Topologie Géom. Différ. Catég. 29 (1988), 203–216.
MR 0975373 |
Zbl 0669.18001
[46]
Remarks on localic groups. Categorical Algebra and its Applications, Lect. Notes Math, 1348, 1988, pp. 154–172.
MR 0975968
[49]
Representability of concrete categories by non-constant morphism. Arch. Math., Brno 25 (1989), 115–118.
MR 1189207
[51] Generating the monadic theory of $C^*$-algebras and related categories. Proc. Categ. Top. and Appl, World Scientific, Singapore, 1989, pp. 163–180.
[54]
Multiplicative lattices and $C^*$-algebras. Cah. Topologie Géom. Différ. Catég. 30 (1989), 95–110.
MR 1004734 |
Zbl 0676.46047
[58]
What are locally generated categories? Proc. Proc. Categ. Conf. Como 1990, Lect. Notes Math, 1488, 1991, pp. 14–19.
MR 1173001
[64]
Weakly locally presentable categories. Cah. Topologie Géom. Différ. Catég. 35 (1994), 179–186.
MR 1295116 |
Zbl 0809.18001
[70]
A topological Banach space model of linear logic. Categorical Topology, E. Giuli (ed.), Kluwer, 1996, pp. 155–162.
MR 1412582 |
Zbl 0891.46046
[71]
An algebraic description of locally multipresentable categories. Theory Appl. Categ. 2 (1996), 40–54.
MR 1399320 |
Zbl 0853.18006
[77]
More on injectivity in locally presentable categories. Theory Appl. Categ. 10 (2002), 148–161.
MR 1895512 |
Zbl 0993.18006
[90]
Quantales. Current Research in Operational Quantum Logic: Algebras, Categories and Languages, B. Coecke, D. Moore, A. Wilce (eds.), Kluwer, Dordrecht, 2000, pp. 245–262.
MR 1907153 |
Zbl 1008.46026
[91]
More on orthogonality in locally presentable categories. Cah. Topologie Géom. Différ. Catég. 42 (2001), 51–80.
MR 1820765 |
Zbl 0981.18007
[97]
On a generalized small-object argument for the injective subcategory problem. Cah. Topologie Géom. Différ. Catég. 43 (2002), 83–106.
MR 1913101 |
Zbl 1002.18002
[101]
Injectivity and accessible categories. Cubo Matem. Educ. 4 (2002), 201–211.
MR 1928825
[102] Modal predicates and coequations. Electronic Notes in Theor. Comp. Sci. 65 (2002), 39–58.
[109]
A characterization of locally $D$-presentable categories. Cah. Topologie Géom. Différ. Catég. 14 (2004), 141–147.
MR 2072935
[115]
Generalized Brown representability in homotopy categories. Theory Appl. Categ. 14 (2005), 451–479.
MR 2211427 |
Zbl 1091.18002
[118] Factorization systems and classification problems. Applied and Computational Category Theory (2006), 24–26.