Previous |  Up |  Next

Article

References:
[1] Algebra. Purkyně University, Brno, 1981, text-book. (Czech)
[2] Universální algebra a teorie svazů. SPN, Praha, 1988, text-book (with L. Bican). (Czech)
[3] Locally presentable and accessible categories. Cambridge University Press, Cambridge, 1994, monograph. MR 1294136 | Zbl 0795.18007
[1] A note on topology compatible with the ordering. Arch. Math., Brno 5 (1969), 19–24. MR 0282344 | Zbl 0235.06003
[2] On the existence of graphs with a certain ordering of vertices. Arch. Math., Brno 6 (1970), 89–113. MR 0294162
[3] Relative Komplemente im Verband der $T_1$-Topologien. Publ. Fac. Sci. Univ, Brno 518, 1970, pp. 445–460. MR 0289382
[4] Topologies compatible with the ordering. Publ. Fac. Sci. Univ, Brno, 1971, pp. 9–23. MR 0326682
[5] On a characterization of the lattice of $m$-ideals of an ordered set. Arch. Math., Brno 8 (1972), 137–142. MR 0335375
[6] Full embeddings with a given restriction. Comment. Math. Univ. Carol. 14 (1973), 519–540. MR 0327866 | Zbl 0267.18007
[7] Strong embeddings into categories of algebras over a monad I. Comment. Math. Univ. Carol. 14 (1973), 699–718. MR 0330257 | Zbl 0269.18002
[8] Realizations of topologies by set-systems. Coll. Math. Soc. J. Bolyai 8. Topics in Topology, Keszthely, 1972, pp. 535–553. MR 0355945
[9] Embeddings of lattices in the lattice of topologies. Arch. Math., Brno 9 (1973), 49–56. MR 0372803
[10] Strong embeddings into categories of algebras over monad II. Comment. Math. Univ. Carol. 15 (1974), 131–147. MR 0342583
[11] Remarks on topologies uniquely determined by their continuous self maps. Czech. Math. J. 24 (1974), 373–377. MR 0348697 | Zbl 0331.54003
[12] The topology of the unit interval is not uniquely determined by its continuous self maps. Colloq. Math. 31 (1974), 179–188. DOI 10.4064/cm-31-2-179-188 | MR 0365446 | Zbl 0289.54024
[13] Preservation of topological properties by automorphisms of the lattice of topologies. Publ. Fac. Sci. Univ, Brno, 1974, pp. 59–62. MR 0397639 | Zbl 0376.54002
[14] Sublattices of the lattice of topologies. Acta Fac. Rer. Natur. Univ. Comenian., Math, 1975, pp. 39–41. MR 0353230 | Zbl 0292.54004
[15] On extensions of full embeddings and binding categories. Comment. Math. Univ. Carol. 15 (1974), 631–653. MR 0354805 | Zbl 0291.18005
[16] Codensity and binding categories. Comment. Math. Univ. Carol. 16 (1975), 515–529. MR 0376800 | Zbl 0314.18003
[17] Concerning binding categories. Czech. Math. J. 25 (1975), 515–529. MR 0387375 | Zbl 0335.18004
[18] Modular, distributive and simple intervals of the lattice of topologies. Arch. Math., Brno 11 (1975), 105–114. MR 0410621
[19] Topologies compatible with the ordering. Publ. Fac. Sci. Univ, Brno, 1974, pp. 39–42. MR 0392739 | Zbl 0293.06010
[20] One example concerning testing categories. Comment. Math. Univ. Carol. 18 (1977), 71–75. MR 0432730 | Zbl 0355.18007
[21] One obstruction for closedness. Comment. Math. Univ. Carol. 18 (1977), 311–318. MR 0470025 | Zbl 0359.18011
[22] Liftings of functors in topological situations. Proc. 4th Prague Toposym, Praha, 1977, pp. 394–400. MR 0482623 | Zbl 0372.54004
[23] 2-categorical tools in the theory of concrete categories. Abstr. 5th Winter School on Abstract Analysis, Praha, 1977, pp. 95–99.
[24] Extensions of functors and their applications. Cah. Topologie Géom. Différ. 19 (1978), 179–219. MR 0528346 | Zbl 0393.18002
[25] Categories of models of infinitary Horn theories. Arch. Math., Brno (1978), 219–226. MR 0512765 | Zbl 0404.18003
[26] An algebraic description of ordinals. Diagrammes 2 (1979). Zbl 0515.03028
[27] Equational categories. Cah. Topologie Géom. Différ. 22 (1981), 85–96. MR 0609163 | Zbl 0463.18002
[28] On algebraic categories. Coll. Math. Soc. J. Bolyai 29, Universal Algebra, Budapest, 1981, pp. 662–690.
[29] Implicit operations on finite algebras. Coll. Math. Soc. J. Bolyai 28, Budapest, 1981, pp. 653–668. MR 0648638 | Zbl 0478.08002
[30] Concrete categories and infinitary languages. J. Pure Appl. Algebra 22 (1981), 309–339. DOI 10.1016/0022-4049(81)90105-5 | MR 0629337 | Zbl 0475.18001
[31] A note on algebraic categories. Arch. Math., Brno 18 (1982), 163–168. MR 0682104 | Zbl 0511.18007
[32] Does $\exp (X)$ exist for a proper class $X$? Abstr. 8th Winter School on Abstract Anal, Praha, 1982, pp. 138–142.
[33] Categories of models of languages $ L_{\kappa \lambda } (\mu )$. Abstr. 9th Winter School on Abstract Anal, Praha, 1982, pp. 153–157.
[34] Categories of models. Seminarberichte Fernuniversität Hagen 19, 1984, pp. 377–413. Zbl 0563.03017
[35] Abstract tangent functors. Diagrammes 12 (1984), 1–11. MR 0800500 | Zbl 0561.18008
[36] Varieties of infinitary universal algebras. Algebra Univ. 20 (1985), 123–126. DOI 10.1007/BF01236811 | MR 0790910 | Zbl 0559.08002
[37] $T_1$-locales. Math. Proc. Camb. Phil. Soc. 98 (1985), 81–86. MR 0789721
[38] Semi-initial completions. J. Pure Appl. Algebra 40 (1986), 177–189. DOI 10.1016/0022-4049(86)90039-3 | MR 0830320 | Zbl 0587.18001
[39] A note on exponentiation in regular locales. Arch. Math., Brno 22 (1986), 157–158. MR 0868131 | Zbl 0609.54009
[40] Multiplicative lattices and frames. Acta Math. Hung. 49 (1987), 391–395. DOI 10.1007/BF01951002 | MR 0891051 | Zbl 0623.06006
[41] A categorical characterization of sets among classes. Arch. Math., Brno 23 (1987), 117–121. MR 0930328 | Zbl 0632.18003
[42] Intersections of reflective subcategories. Proc. Amer. Math. Soc. 103 (1988), 710–712. DOI 10.1090/S0002-9939-1988-0947643-9 | MR 0947643 | Zbl 0675.18002
[43] Essentially equational categories. Cah. Topologie Géom. Différ. Catég. 29 (1988), 175–192. MR 0975371 | Zbl 0659.18010
[44] Are all limit closed subcategories of locally presentable categories reflective. Categorical Algebra and its Applications, Lect. Notes Math. 1348, 1988, pp. 1–18. MR 0975956 | Zbl 0668.18004
[45] Orthogonal and prereflective subcategories. Cah. Topologie Géom. Différ. Catég. 29 (1988), 203–216. MR 0975373 | Zbl 0669.18001
[46] Remarks on localic groups. Categorical Algebra and its Applications, Lect. Notes Math, 1348, 1988, pp. 154–172. MR 0975968
[47] Reflections in locally presentable categories. Arch. Math., Brno 25 (1989), 89–94. MR 1189203 | Zbl 0742.18002
[48] Elementary categories. Arch. Math. (Basel) 52 (1989), 284–288. DOI 10.1007/BF01194392 | MR 0989884 | Zbl 0665.18004
[49] Representability of concrete categories by non-constant morphism. Arch. Math., Brno 25 (1989), 115–118. MR 1189207
[50] Quantales and $C^*$-algebras. J. London Math. Soc. 40 (1989), 398–404. MR 1053610 | Zbl 0705.06009
[51] Generating the monadic theory of $C^*$-algebras and related categories. Proc. Categ. Top. and Appl, World Scientific, Singapore, 1989, pp. 163–180.
[52] Topological reflections revisited. Proc. Amer. Math. Soc. 108 (1990), 605–612. DOI 10.1090/S0002-9939-1990-0987614-9 | MR 0987614 | Zbl 0694.18006
[53] Elementary categories. Arch. Math. (Basel) 52 (1989), 248–288. MR 1006723 | Zbl 0665.18004
[54] Multiplicative lattices and $C^*$-algebras. Cah. Topologie Géom. Différ. Catég. 30 (1989), 95–110. MR 1004734 | Zbl 0676.46047
[55] Unexpected properties of locally presentable categories. Algebra Univ. 27 (1990), 153–170. DOI 10.1007/BF01182450 | MR 1037859 | Zbl 0701.18003
[56] On orthogonal subcategories of locally presentable categories. Discrete Math. 108 (1992), 133–137. DOI 10.1016/0012-365X(92)90667-5 | MR 1189836 | Zbl 0767.18002
[57] On injectivity in locally presentable categories. Trans. Amer. Math. Soc. 336 (1993), 785–804. DOI 10.1090/S0002-9947-1993-1085935-2 | MR 1085935 | Zbl 0789.18003
[58] What are locally generated categories? Proc. Proc. Categ. Conf. Como 1990, Lect. Notes Math, 1488, 1991, pp. 14–19. MR 1173001
[59] On the equational theory of $C^*$-algebras. Algebra Univ. 30 (1993), 275–284. DOI 10.1007/BF01196099 | MR 1223636 | Zbl 0817.46057
[60] Characterizing spatial quantales. Algebra Univ. 34 (1995), 175–178. MR 1348946 | Zbl 0837.46055
[61] Models of Horn theories revisited. J. Pure Appl. Algebra 92 (1994), 185–190. DOI 10.1016/0022-4049(94)90023-X | MR 1261125 | Zbl 0798.18004
[62] Accessibility and the solution set condition. J. Pure Appl. Algebra 98 (1995), 189–208. DOI 10.1016/0022-4049(94)00035-H | MR 1319969 | Zbl 0817.18004
[63] More on directed colimits of models. Appl. Categ. Struct. 2 (1994), 71–76. DOI 10.1007/BF00878503 | MR 1283214 | Zbl 0801.18004
[64] Weakly locally presentable categories. Cah. Topologie Géom. Différ. Catég. 35 (1994), 179–186. MR 1295116 | Zbl 0809.18001
[65] Finitary sketches and finitely accessible categories. Math. Struct. Comput. Sci. 5 (1995), 315–322. DOI 10.1017/S0960129500000773 | MR 1361603 | Zbl 0838.18001
[66] Finitary sketches. J. Symb. Log. 62 (1997), 699–707. MR 1472119 | Zbl 0885.18001
[67] On preaccessible categories. J. Pure Appl. Algebra 105 (1995), 225–232. DOI 10.1016/0022-4049(94)00152-9 | MR 1367868 | Zbl 0852.18003
[68] Quantaloids for concurrency. Appl. Categ. Struct. 9 (2001), 329–338. DOI 10.1023/A:1011252012003 | MR 1847304 | Zbl 0991.18008
[69] On geometric and finitary sketches. Appl. Categ. Struct. 4 (1996), 227–240. DOI 10.1007/BF00122254 | MR 1406100 | Zbl 0855.18005
[70] A topological Banach space model of linear logic. Categorical Topology, E. Giuli (ed.), Kluwer, 1996, pp. 155–162. MR 1412582 | Zbl 0891.46046
[71] An algebraic description of locally multipresentable categories. Theory Appl. Categ. 2 (1996), 40–54. MR 1399320 | Zbl 0853.18006
[72] Accessible categories, saturation and categoricity. J. Symb. Log. 62 (1997), 891–901. DOI 10.2307/2275577 | MR 1472128 | Zbl 0891.03034
[73] Finite models of sketches. J. Pure Appl. Algebra 116 (1997), 3–23. DOI 10.1016/S0022-4049(96)00159-4 | MR 1437610 | Zbl 0867.18005
[74] Simple involutive quantales. J. Algebra 195 (1997), 367–386. DOI 10.1006/jabr.1997.7051 | MR 1469630 | Zbl 0894.06005
[75] Cartesian closed exact completions. J. Pure Appl. Algebra 142 (1999), 261–270. DOI 10.1016/S0022-4049(98)00146-7 | MR 1721095 | Zbl 0937.18003
[76] Localizations of varieties and quasivarieties. J. Pure Appl. Algebra 148 (2000), 275–284. DOI 10.1016/S0022-4049(98)00155-8 | MR 1758734 | Zbl 0948.18009
[77] More on injectivity in locally presentable categories. Theory Appl. Categ. 10 (2002), 148–161. MR 1895512 | Zbl 0993.18006
[78] A theory of enriched sketches. Theory Appl. Categ. 4 (1998), 47–72. MR 1624638 | Zbl 0981.18006
[79] On multivarieties and multialgebraic categories. J. Pure Appl. Algebra 163 (2001), 1–17. DOI 10.1016/S0022-4049(01)00015-9 | MR 1847373 | Zbl 0986.18007
[80] On essentially algebraic theories and their generalizations. Algebra Univ. 41 (1999), 213–227. DOI 10.1007/s000120050111 | MR 1699341 | Zbl 0970.18006
[81] Syntactic characterizations of various classes of locally presentable categories. J. Pure Appl. Algebra 161 (2001), 65–90. DOI 10.1016/S0022-4049(01)00016-0 | MR 1834079 | Zbl 0982.18006
[82] Algebras over variable theories. Algebra Univ. 47 (2002), 55–64. DOI 10.1007/s00012-002-8174-3 | MR 1901732 | Zbl 1061.18007
[83] On abstract data types presented by multiequations. Theory Comp. Sci. 275 (2002), 427–462. DOI 10.1016/S0304-3975(01)00189-X | MR 1902100 | Zbl 1026.68031
[84] Comparing coequalizer and exact completions. Theory Appl. Categ. 6 (1999), 77–82. MR 1732464 | Zbl 0941.18004
[85] Varieties without minimal generators. Algebra Univ. 45 (2001), 23–33. DOI 10.1007/s000120050199 | MR 1809854 | Zbl 1044.18001
[86] Continuous categories revisited. Theory Appl. Categ. 11 (2003), 252–282. MR 1988399 | Zbl 1018.18003
[87] On sifted colimits and generalized varieties. Theory Appl. Categ. 8 (2001), 33–53. MR 1815045 | Zbl 0971.18004
[88] On the duality between varieties and algebraic theories. Algebra Univ. 49 (2003), 35–49. DOI 10.1007/s000120300002 | MR 1978611 | Zbl 1090.18004
[89] Uncountable orthogonality is a closure property. Bull. London Math. Soc. 33 (2001), 685–688. DOI 10.1112/S0024609301008451 | MR 1853779 | Zbl 1031.18004
[90] Quantales. Current Research in Operational Quantum Logic: Algebras, Categories and Languages, B. Coecke, D. Moore, A. Wilce (eds.), Kluwer, Dordrecht, 2000, pp. 245–262. MR 1907153 | Zbl 1008.46026
[91] More on orthogonality in locally presentable categories. Cah. Topologie Géom. Différ. Catég. 42 (2001), 51–80. MR 1820765 | Zbl 0981.18007
[92] Injective hulls are not natural. Algebra Univ. 48 (2002), 379–388. DOI 10.1007/s000120200006 | MR 1967087 | Zbl 1061.18010
[93] Exact completion and representations in abelian categories. Homol. Homot. and Appl. 3 (2001), 453–466. DOI 10.4310/HHA.2001.v3.n3.a1 | MR 1875916 | Zbl 0993.18001
[94] On algebraically exact categories and essential localizations of varieties. J. Algebra 244 (2001), 450–477. DOI 10.1006/jabr.2000.8577 | MR 1859036 | Zbl 1004.18006
[95] How algebraic is algebra. Theory Appl. Categ. 8 (2001), 253–283. MR 1825435 | Zbl 0978.18006
[96] Flat covers and factorizations. J. Algebra 253 (2002), 1–13. DOI 10.1016/S0021-8693(02)00043-1 | MR 1925005 | Zbl 1024.18002
[97] On a generalized small-object argument for the injective subcategory problem. Cah. Topologie Géom. Différ. Catég. 43 (2002), 83–106. MR 1913101 | Zbl 1002.18002
[98] Weak factorization systems and topological functors. Appl. Categ. Struct. 10 (2002), 237–249. DOI 10.1023/A:1015270120061 | MR 1916156 | Zbl 0997.18002
[99] Lax factorization algebras. J. Pure Appl. Algebra 175 (2002), 355–382. DOI 10.1016/S0022-4049(02)00141-X | MR 1935984 | Zbl 1013.18001
[100] Classification of accessible categories. J. Pure Appl. Algebra 175 (2002), 7–30. DOI 10.1016/S0022-4049(02)00126-3 | MR 1935970 | Zbl 1010.18005
[101] Injectivity and accessible categories. Cubo Matem. Educ. 4 (2002), 201–211. MR 1928825
[102] Modal predicates and coequations. Electronic Notes in Theor. Comp. Sci. 65 (2002), 39–58.
[103] Left-determined model categories and universal homotopy theories. Trans. Amer. Math. Soc. 355 (2003), 3611–3623. DOI 10.1090/S0002-9947-03-03322-1 | MR 1990164 | Zbl 1030.55015
[104] On quantales and spectra of $C^{\ast }$-algebras. Appl. Categ. Struct. 11 (2003), 543–560. DOI 10.1023/A:1026106305210 | MR 2017650 | Zbl 1044.46052
[105] On pure subobjects and pure quotients. Czech. Math. J. 54 (2004), 623–636. DOI 10.1007/s10587-004-6413-9 | MR 2086721
[106] On projectivity in locally presentable categories. J. Algebra 272 (2004), 701–710. DOI 10.1016/j.jalgebra.2003.09.014 | MR 2028077 | Zbl 1040.18008
[107] Toward a characterization of algebraic exactness. J. Algebra 272 (2004), 730–738. DOI 10.1016/j.jalgebra.2003.06.009 | MR 2028079 | Zbl 1044.18002
[108] On von Neumann varieties. Theory Appl. Categ. 13 (2004), 5–26. MR 2116320 | Zbl 1057.18004
[109] A characterization of locally $D$-presentable categories. Cah. Topologie Géom. Différ. Catég. 14 (2004), 141–147. MR 2072935
[110] Special reflexive graphs in modular varieties. Algebra Univ. 52 (2004), 5–26. MR 2099784 | Zbl 1087.08006
[111] Semi-abelian monadic categories. Theory Appl. Categ. 13 (2004), 106–113. MR 2116325 | Zbl 1063.18008
[112] When is flatness coherent? Commun. Algebra 33 (2005), 1903–1912. DOI 10.1081/AGB-200063333 | MR 2150850
[113] Weak factorization systems, fractions and homotopies. Appl. Categ. Struct. 13 (2005), 141–160. DOI 10.1007/s10485-004-6730-z | MR 2141595
[114] Operations and equations for coalgebras. Math. Struct. Comp. Sci. 15 (2005), 149–166. DOI 10.1017/S0960129504004402 | MR 2121493 | Zbl 1066.08005
[115] Generalized Brown representability in homotopy categories. Theory Appl. Categ. 14 (2005), 451–479. MR 2211427 | Zbl 1091.18002
[116] Completeness of cocompletions. J. Pure Appl. Algebra 196 (2005), 229–250. DOI 10.1016/j.jpaa.2004.08.019 | MR 2110524 | Zbl 1068.18002
[117] Pure morphisms in pro-categories. J. Pure Appl. Algebra 207 (2006), 19–35. MR 2244258 | Zbl 1099.18002
[118] Factorization systems and classification problems. Applied and Computational Category Theory (2006), 24–26.
Partner of
EuDML logo