Previous |  Up |  Next

Article

Keywords:
subtraction algebra; subtraction semigroup; implicative $BCK$-algebra; $BCI$-semigroup
Summary:
In this note we show that a subtraction algebra is equivalent to an implicative $BCK$-algebra, and a subtraction semigroup is a special case of a $BCI$-semigroup.
References:
[1] J. C. Abbott: Semi-Boolean Algebras. Matemat. Vesnik 4 (1967), 177–198. MR 0239957
[2] J. C. Abbott: Sets, Lattices and Boolean Algebras. Allyn and Bacon, Boston, 1969. MR 0242723 | Zbl 0222.06001
[3] S. S. Ahn, H. S. Kim: A note on $I$-ideals in $BCI$-semigroups. Comm. Korean Math. Soc. 11 (1996), 895–902. MR 1434849
[4] Y. B. Jun, S. S. Ahn, J. Y. Kim, H. S. Kim: Fuzzy $I$-ideals in $BCI$-semigroups. Southeast Asian Bull. Math. 22 (1998), 147–153. MR 1684225
[5] Y. B. Jun, S. M. Hong, E. H. Roh: $BCI$-semigroups. Honam Mathematical J. 15 (1993), 59–64. MR 1238590
[6] Y. B. Jun, J. Y. Kim, Y. H. Kim, H. S. Kim: Fuzzy commutative $I$-ideals in $BCI$-semigroups. J. Fuzzy Math. 5 (1997), 889–898. MR 1488035
[7] J. Meng, Y. B. Jun: $BCK$-algebras. Kyung Moon Sa Co., Seoul, 1994. MR 1297121
[8] E. H. Roh, S. Y. Kim, W. H. Shim: $a \& I$-ideals on $IS$-algebras. Sci. Math. Japonicae Online 4 (2001), 21–25. MR 1821605
[9] B. M. Schein: Difference semigroups. Commun. Algebra 20 (1992), 2153–2169. DOI 10.1080/00927879208824453 | MR 1172654 | Zbl 0798.20058
[10] H. Yutani: On a system of axioms of a commutative $BCK$-algebras. Math. Seminar Notes 5 (1977), 255–256. MR 0457314
[11] B. Zelinka: Subtraction semigroups. Math. Bohem. 120 (1995), 445–447. MR 1415091 | Zbl 0851.20057
Partner of
EuDML logo