Title:
|
Frankl’s conjecture for large semimodular and planar semimodular lattices (English) |
Author:
|
Czédli, Gábor |
Author:
|
Schmidt, E. Tamás |
Language:
|
English |
Journal:
|
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica |
ISSN:
|
0231-9721 |
Volume:
|
47 |
Issue:
|
1 |
Year:
|
2008 |
Pages:
|
47-53 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A lattice $L$ is said to satisfy (the lattice theoretic version of) Frankl’s conjecture if there is a join-irreducible element $f\in L$ such that at most half of the elements $x$ of $L$ satisfy $f\le x$. Frankl’s conjecture, also called as union-closed sets conjecture, is well-known in combinatorics, and it is equivalent to the statement that every finite lattice satisfies Frankl’s conjecture. Let $m$ denote the number of nonzero join-irreducible elements of $L$. It is well-known that $L$ consists of at most $2^m$ elements. Let us say that $L$ is large if it has more than $5\cdot 2^{m-3}$ elements. It is shown that every large semimodular lattice satisfies Frankl’s conjecture. The second result states that every finite semimodular planar lattice $L$ satisfies Frankl’s conjecture. If, in addition, $L$ has at least four elements and its largest element is join-reducible then there are at least two choices for the above-mentioned $f$. (English) |
Keyword:
|
union-closed sets |
Keyword:
|
Frankl’s conjecture |
Keyword:
|
lattice |
Keyword:
|
semimodularity |
Keyword:
|
planar lattice |
MSC:
|
05A05 |
MSC:
|
05B35 |
MSC:
|
06A07 |
MSC:
|
06E99 |
idZBL:
|
Zbl 1187.05002 |
idMR:
|
MR2482716 |
. |
Date available:
|
2009-08-27T11:28:57Z |
Last updated:
|
2012-05-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/133405 |
. |
Reference:
|
[1] Tetsuya, A: Excess of a lattice.Graphs and Combinatorics 18 (2002), 395–402. Zbl 1023.06002, MR 1939063 |
Reference:
|
[2] Tetsuya, A: Strong semimodular lattices and Frankl’s conjecture.Algebra Universalis 44 (2000), 379–382. Zbl 1013.06008, MR 1816032 |
Reference:
|
[3] Tetsuya A., Bumpei N.: Frankl’s conjecture is true for modular lattices, Graphs and Combinatorics.14 (1998), 305–311. MR 1658869 |
Reference:
|
[4] Tetsuya A., Bumpei N.: Lower semimodular types of lattices: Frankl’s conjecture holds for lower quasi-semimodular lattices.Graphs Combin. 16, 1 (2000), 1–16. Zbl 0948.06006, MR 1750462 |
Reference:
|
[5] Burris S., Sankappanavar H. P.: A Course in Universal Algebra.Graduate Texts in Mathematics, 78. Springer-Verlag, New York–Berlin, 1981; The Millennium Edition, http://www.math.uwaterloo.ca/$\sim $snburris/htdocs/ualg.html. Zbl 0478.08001, MR 0648287 |
Reference:
|
[6] Czédli G.: On averaging Frankl’s conjecture for large union-closed sets., Journal of Combinatorial Theory - Series A, to appear. Zbl 1206.05099 |
Reference:
|
[7] Czédli G., Schmidt E. T.: How to derive finite semimodular lattices from distributive lattices?.Acta Mathematica Hungarica, to appear. Zbl 1199.06028, MR 2452806 |
Reference:
|
[8] Czédli G., Maróti, M, Schmidt E. T.: On the scope of averaging for Frankl’s conjecture.Order, submitted. Zbl 1229.05259 |
Reference:
|
[9] Frankl P.: Extremal set systems. Handbook of combinatorics.Vol. 1, 2, 1293–1329, Elsevier, Amsterdam, 1995. MR 1373680 |
Reference:
|
[10] Weidong G.,Hongquan Y.: Note on the union-closed sets conjecture.Ars Combin. 49 (1998), 280–288. Zbl 0963.05129, MR 1633064 |
Reference:
|
[11] Grätzer G.: General Lattice Theory. : Birkhäuser Verlag, Basel–Stuttgart., 1978, sec. edi. 1998. MR 0504338 |
Reference:
|
[12] Grätzer G., Knapp E.: A note on planar semimodular lattices.Algebra Universalis 58 (2008), 497-499. Zbl 1223.06006, MR 2443218 |
Reference:
|
[13] Herrmann C., Langsdorf R.: Frankl’s conjecture for lower semimodular lattices.http://www.mathematik.tu-darmstadt.de:8080/$\sim $herrmann/recherche/ |
Reference:
|
[14] Poonen B.: Union-closed families.J. Combinatorial Theory A 59 (1992), 253–268. Zbl 0758.05096, MR 1149898 |
Reference:
|
[15] Reinhold J.: Frankl’s conjecture is true for lower semimodular lattices.Graphs and Combinatorics 16 (2000), 115–116. Zbl 0948.06007, MR 1750455 |
Reference:
|
[16] Roberts I.: Tech. Rep. No. 2/92. : School Math. Stat., Curtin Univ. Tech., Perth., 1992. |
Reference:
|
[17] Stanley R. P.: Enumerative Combinatorics, Vol. I. : Wadsworth & Brooks/Coole, Belmont, CA., 1986. MR 0847717 |
. |