Previous |  Up |  Next

Article

Title: Frankl’s conjecture for large semimodular and planar semimodular lattices (English)
Author: Czédli, Gábor
Author: Schmidt, E. Tamás
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 47
Issue: 1
Year: 2008
Pages: 47-53
Summary lang: English
.
Category: math
.
Summary: A lattice $L$ is said to satisfy (the lattice theoretic version of) Frankl’s conjecture if there is a join-irreducible element $f\in L$ such that at most half of the elements $x$ of $L$ satisfy $f\le x$. Frankl’s conjecture, also called as union-closed sets conjecture, is well-known in combinatorics, and it is equivalent to the statement that every finite lattice satisfies Frankl’s conjecture. Let $m$ denote the number of nonzero join-irreducible elements of $L$. It is well-known that $L$ consists of at most $2^m$ elements. Let us say that $L$ is large if it has more than $5\cdot 2^{m-3}$ elements. It is shown that every large semimodular lattice satisfies Frankl’s conjecture. The second result states that every finite semimodular planar lattice $L$ satisfies Frankl’s conjecture. If, in addition, $L$ has at least four elements and its largest element is join-reducible then there are at least two choices for the above-mentioned $f$. (English)
Keyword: union-closed sets
Keyword: Frankl’s conjecture
Keyword: lattice
Keyword: semimodularity
Keyword: planar lattice
MSC: 05A05
MSC: 05B35
MSC: 06A07
MSC: 06E99
idZBL: Zbl 1187.05002
idMR: MR2482716
.
Date available: 2009-08-27T11:28:57Z
Last updated: 2012-05-04
Stable URL: http://hdl.handle.net/10338.dmlcz/133405
.
Reference: [1] Tetsuya, A: Excess of a lattice.Graphs and Combinatorics 18 (2002), 395–402. Zbl 1023.06002, MR 1939063
Reference: [2] Tetsuya, A: Strong semimodular lattices and Frankl’s conjecture.Algebra Universalis 44 (2000), 379–382. Zbl 1013.06008, MR 1816032
Reference: [3] Tetsuya A., Bumpei N.: Frankl’s conjecture is true for modular lattices, Graphs and Combinatorics.14 (1998), 305–311. MR 1658869
Reference: [4] Tetsuya A., Bumpei N.: Lower semimodular types of lattices: Frankl’s conjecture holds for lower quasi-semimodular lattices.Graphs Combin. 16, 1 (2000), 1–16. Zbl 0948.06006, MR 1750462
Reference: [5] Burris S., Sankappanavar H. P.: A Course in Universal Algebra.Graduate Texts in Mathematics, 78. Springer-Verlag, New York–Berlin, 1981; The Millennium Edition, http://www.math.uwaterloo.ca/$\sim $snburris/htdocs/ualg.html. Zbl 0478.08001, MR 0648287
Reference: [6] Czédli G.: On averaging Frankl’s conjecture for large union-closed sets., Journal of Combinatorial Theory - Series A, to appear. Zbl 1206.05099
Reference: [7] Czédli G., Schmidt E. T.: How to derive finite semimodular lattices from distributive lattices?.Acta Mathematica Hungarica, to appear. Zbl 1199.06028, MR 2452806
Reference: [8] Czédli G., Maróti, M, Schmidt E. T.: On the scope of averaging for Frankl’s conjecture.Order, submitted. Zbl 1229.05259
Reference: [9] Frankl P.: Extremal set systems. Handbook of combinatorics.Vol. 1, 2, 1293–1329, Elsevier, Amsterdam, 1995. MR 1373680
Reference: [10] Weidong G.,Hongquan Y.: Note on the union-closed sets conjecture.Ars Combin. 49 (1998), 280–288. Zbl 0963.05129, MR 1633064
Reference: [11] Grätzer G.: General Lattice Theory. : Birkhäuser Verlag, Basel–Stuttgart., 1978, sec. edi. 1998. MR 0504338
Reference: [12] Grätzer G., Knapp E.: A note on planar semimodular lattices.Algebra Universalis 58 (2008), 497-499. Zbl 1223.06006, MR 2443218
Reference: [13] Herrmann C., Langsdorf R.: Frankl’s conjecture for lower semimodular lattices.http://www.mathematik.tu-darmstadt.de:8080/$\sim $herrmann/recherche/
Reference: [14] Poonen B.: Union-closed families.J. Combinatorial Theory A 59 (1992), 253–268. Zbl 0758.05096, MR 1149898
Reference: [15] Reinhold J.: Frankl’s conjecture is true for lower semimodular lattices.Graphs and Combinatorics 16 (2000), 115–116. Zbl 0948.06007, MR 1750455
Reference: [16] Roberts I.: Tech. Rep. No. 2/92. : School Math. Stat., Curtin Univ. Tech., Perth., 1992.
Reference: [17] Stanley R. P.: Enumerative Combinatorics, Vol. I. : Wadsworth & Brooks/Coole, Belmont, CA., 1986. MR 0847717
.

Files

Files Size Format View
ActaOlom_47-2008-1_5.pdf 504.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo