Previous |  Up |  Next

Article

References:
[1] CHERN S. S.: Complex Manifolds. Izd. Inostr. Lit., Moskvа, 1961. Zbl 0098.35201
[2] GOLDBERG S. L.-PETRIDIS N. C.: Differentiable solutions of algebraic equations on manifolds. Kôdаi Mаth. Sem. Rep. 25 (1973), 111-128. MR 0315627 | Zbl 0253.53034
[3] GOLDBERG S. I.-YANO K.: Polynomial structures on manifolds. Kôdаi Mаth. Sem. Rep. 22 (1970), 199-218. MR 0267478 | Zbl 0194.52702
[4] KOBAYSHI S.: Foundations of Differential Geometry II. Intersc. Publ., New York-London-Sydney, 1969.
[5] LEHMANN-LEJEUNE J.: Integrabilité des G-structures definies par une 1-forme 0-deformable a valeurs dans le fibre tangentx. Ann. Inst. Fourier (Grenoble) 16 (1966), 329 387. MR 0212720
[6] LEHMANN-LEJEUNE J.: Sur ľintégrabilité de certaines G-structures. C. R. Acаd. Sci. Pаris Sér. I Mаth. 258 (1984), 32-35.
[7] MIZNER R. I.: Almost CR structures, f -structures, almost product structures and associated connections. Rocky Mountаin J. Mаth. 23 (1993), 1337-1359. MR 1256452 | Zbl 0806.53030
[8] PHAM MAU QUAM: Introduction à la géométrie des variétés différentiables. Dunod, Pаris, 1968.
[9] VANŽURA J.: Integrability conditions for polynomial structures. Kodаi Mаth. Sem. Rep. 27 (1976), 42-50. MR 0400106 | Zbl 0326.53050
[10] VANŽUROVÁ A.: Polynomial structures with double roots. Actа Univ. Pаlаck. Olomouc . Fаc. Rerum Nаtur. Mаth. 36 (1997), 187-196. MR 1620557 | Zbl 0958.53023
[11] WALKER A. G.: Almost-product structures. In: Differentiаl geometry. Proc. Sympos. Pure Mаth. 3, Amer. Mаth. Soc, Providence, RI, 1961, pp. 94-100. MR 0123993 | Zbl 0103.38801
[12] YANO K.: On a structure defined by a tensor field $f$ of type $(1,1)$ satisfying $f^3 + f = 0$. Tensor 14 (1963), 99-109. MR 0159296
Partner of
EuDML logo