Article
Keywords:
completely regular semiring; skew-ring; b-lattice; archimedean semiring; additive separative semiring
Summary:
Recently, we have shown that a semiring $S$ is completely regular if and only if $ S$ is a union of skew-rings. In this paper we show that a semiring $S$ satisfying $a^2=na$ can be embedded in a completely regular semiring if and only if $S$ is additive separative.
References:
[1] Clifford A. H., Preston G. B.: The algebraic theory of semigroups. :
Amer. Math. Soc., Providence Rhode Island, Vol. I. 1961.
MR 0132791
[2] Grillet M. P.:
Semirings with a completely simple additive semigroup. J. Austral. Math. Soc. A 20 (1975), 257–267.
MR 0491843 |
Zbl 0316.16039
[3] Hebisch, U, Weinert H. J.: Semirings, Algebra Theory, Applications in Computer Science, Series in Algebra. :
Vol. 5, World Scientific, Singapore. 1998.
MR 1704233
[4] Sen M. K., Maity S. K., Shum K. P.:
On completely regular semirings. (submitted).
Zbl 1115.16026