Previous |  Up |  Next

Article

References:
[1] DEN JOY A.: Sur les courbes definies les equations différentielles a la surface du tore. J. Math. Pures Appl., IX. Ser. 11 (1932), 333-375.
[2] GEDEON T.: There are no chaotic mappings with residual scrambled sets. Bull. Austr. Math. Soc. 36 (1987), 411-416. MR 0923822 | Zbl 0646.26008
[3] HARRISON J.: Wandering intervals. In: Dynamical Systems and Turbulence. (Warwick 1980), Lecture Notes in Math, vol 898, Springer Berlin, Heidelberg and N. Y., 1981, pp. 154-163. MR 0654888
[4] JANKOVÁ K., SMÍTAL J.: A characterization of chaos. Bull. Austr. Math. Soc. 34 (1986), 283-293. MR 0854575 | Zbl 0577.54041
[5] JANKOVÁ K., SMÍTAL J.: A Theorem of Sarkovskii characterizing continuous map with zero topological entropy. Math. Slovaca (To appear). MR 1016343
[6] PREISS D., SMÍTAL J.: A characterization of non-chaotic continuous mappings of the interval stable under small perturbations. Trans. Am. Math. Soc. (To appear). MR 0997677
[7] SMÍTAL J.: Chaotic functions with zero topological entropy. Trans. Am. Math. Soc. 297 (1986), 269-282. MR 0849479 | Zbl 0639.54029
[8] SMÍTAL J.: A chaotic function with scrambled set of positive Lebesque measure. Proc. Am. Math. Soc. 92 (1984), 50-54. MR 0749888
[9] ŠARKOVSKII A. N.: The behaviour of a map in a neighbourhood of an attracting set. (Russian), Ukrain. Math. Zh. 18 (1966), 60-83. MR 0212784
[10] ŠARKOVSKII A. N.: Attracting sets containing no cycles. (Russian), Ukr. Math. Zh. 20 (1968), 136-142. MR 0225314
[11] ŠARKOVSKII A. N.: On cycles and structure of continuous mappings. (Russian), Ukr. Math. Zh. 17 (1965), 104-111. MR 0186757
[12] ŠARKOVSKII A. N.: A mapping with zero topological entropy having continuum minimal Cantor sets. (Russian), In: Dynamical Systems and Turbulence. Kiev, 1989, pp. 109-115.
[13] van STRIEN S. J.: Smooth dynamics on the interval. Preprint (1987).
Partner of
EuDML logo