Previous |  Up |  Next

Article

References:
[BH] BOYLE M., HANDELMAN D.: Algebraic shift equivalence and primitive matrices. Trans. Amer. Math. Soc. 336 (1993), 121-149. MR 1102219 | Zbl 0766.15024
[CP] CLIFFORD A. H., PRESTON G. B.: The Algebraic Theory of Semigroups. Amer. Math. Soc, Providence, R.I., 1961. MR 0132791 | Zbl 0111.03403
[KR1] KIM K. H., ROUSH F. W.: An algorithm for sofic shift equivalence. Ergodic Theory Dynamical Systems 10 (1990), 381-393. MR 1062765 | Zbl 0674.20041
[KR2] KIM. K. H., ROUSH F. W.: Strong shift equivalence of Boolean and positive rational matrices. Linear Algebra Appl. 161 (1992), 153-164. MR 1142735 | Zbl 0744.15012
[KR3] KIM K. H., ROUSH F. W.: The Williams conjecture is false for reducible subshifts. J. Amer. Math. Soc. 5 (1992), 213-215. MR 1130528
[W] WILLIAMS R. F.: Classification of subshifts of finite type. Ann. of Math. 98 (1973), 120-153. MR 0331436 | Zbl 0282.58008
Partner of
EuDML logo