[1] ABEL N. H.: Untersuchung der Funktionen zweier unabhängig veränderlicher Großen x and y, wie f(x,y), welche die Eigenschaft haben, daß f(z,f(x,y)) eine symmetrische Funktion von z, x und y ist. J. Reine Angew. Math.1 (1826). 11-15.
[2] ACZÉL J.:
The State of the second part of Hilbert's Fifth Problem. Bull. Anier. Math. Soc. 20 (1989). 153-163.
MR 0981872 |
Zbl 0676.39004
[4] BROWN D. R., HOUSTON. R. S.:
Cancellative semigroups on manifolds. Semigroup Forum 35 (1987). 279-302.
MR 0900105 |
Zbl 0626.22001
[5] COMFORT W. W., HOFMANN. K. H., REMUS D.:
Topological groups and semigroups. In: Recent Progress in General Topology (M. Hušek and J. van Mill. eds.). Elsevier 1992, pp. 57-144.
MR 1229123 |
Zbl 0798.22001
[7] GRUNDHÖFFER T., SALZMANN H., STROPPEL M.: M.: Compact Projective Plains. (In preparation).
[8] HILGERT J., HOFMANN. K. H., LAWSON. J. D.:
Lie groups, convex cones, and semigroups. Oxford university Press, 1989.
MR 1032761 |
Zbl 0701.22001
[9] HILGERT J., NEEB K.-H.:
Lie Semigroups and their Applications. Lecture Notes in Math. 1552. Springer-New York-Berlin, 1993.
MR 1317811 |
Zbl 0807.22001
[10] HOFMANN K. H., MOSTERT P. S.:
Elements of Compact Semigroups. Charles R. Merrill Books. Columbus. Ohio. 1966.
MR 0209387 |
Zbl 0161.01901
[11] HOFMANN K. H., WEISS W.:
More on cancellative semigroups on manifolds. Semigroup Forum 37 (1988), 93-111.
MR 0929446 |
Zbl 0635.22003
[13] JACOBY R.:
Some theorems on the structure of locally compact local groups. Ann. of Math. 50 (1957), 36-69.
MR 0089997 |
Zbl 0084.03202
[14] von KOCH H.:
Sur un curbe continue sans tangente obtenue par une construction géométrique élémentaire. Acta Math. 30 (1906), 145-174.
MR 1555026
[15]
Mathematical Developments Arising from Hilbert Problems. Proc. Sympos. Pure Math. XXXVIII. Amer. Math. Soc., Providence, R.I., 1976.
Zbl 0326.00002
[16]
Deane Montgomery 1909-1992. Collection of Addresses delivered at the Institute for Advanced Study on November 13, 1992, Inst. Adv. Study, Princeton, 1993.
[17] MONTGOMERY D., ZIPPIN L.:
Small subgroups of finite dimensional groups. Ann. of Math. 56 (1952), 213-241.
MR 0049204 |
Zbl 0049.30107
[18] NEEB. K.-H.: Holomorphic Representation Theory and Coadjoint Orbits of Convexity Type. Habilitationsschrift, Technische Hochschule, Darmstadt, 1993.
[19] SCHWARZ S.:
Remark on bicompact semigroups. Mat.-Fyz. Časopis 5 (1955), 86-89.
MR 0077872
[20] SCHWARZ S.:
On Hausdorff bicompact semigroups. Czechoslovak Math. J. 5(80) (1955), 1-23.
MR 0074769 |
Zbl 0068.02301
[21] SCHWARZ S.:
Characters of bicompact semigroups. Czechoslovak Math. J. 5(80) (1955), 24-28.
MR 0074770
[22] SCHWARZ S.:
The theory of characters of commutative Hausdorff bicompact semigroups. Czechoslovak Math. J. 6(81) (1956), 330-364.
MR 0092098
[23] SKLJARENKO E. G.: Zum 5. Hilbertschen Problem. In: Ostwalds Klassiker Exakt. Wiss. 252. Akad. Verl. Gesellsch., Leipzig, 1987, pp. 21-24.
[26] HOFMANN K. H., LAWSON J. D.:
Linearly ordered semigroups: A historical overview. In: Progress in Semigroups and Related Areas (K. H. Hofmann and M. Mislove, eds.), 1994 (To appear).
MR 0376461