[3] HARDY G. H.-WRIGHT E. M.:
An Introduction to the Theory of Numbers. Claredon Press, Oxford, 1954.
MR 0067125 |
Zbl 0058.03301
[4] KOSTYRKO P.-MACAJ M.-ŠALÁT T.: Statistical convergence and $\Cal J$-convergence. (To appear).
[5] NIVEN I.-ZUCKERMAN H. S.:
An Introduction to the Theory of Numbers. John Willey, New York-London-Sidney, 1967.
MR 0195783
[6] OSTMANN H. H.:
Additive Zahlentheorie I. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1956.
MR 0098721 |
Zbl 0072.03101
[7] POWEL B. J.-ŠALÁT T.:
Convergence of subseries of the harmonic series and asymptotic densities of sets of positive integers. Publ. Inst. Math. (Beograd) (N.S.) 50 (1991), 60-70.
MR 1252159
[8]
Problem E 1058 [1953, 188]. Proposed by Perisastri, M. Solution by Briggs, W, E., Amer. Math. Monthly 60 (1953), 628-629.
MR 1528556
[9]
Problem E 2946 [1982, 333]. Proposed by Simion, R. and Schmidt, F. W. Solution by Niven, I., Amer. Math. Monthly 91 (1984), 650.
[11] SALAT T.:
On statistically convergent sequences of real numbers. Math. Slovaca 30 (1980), 139-150.
MR 0587239 |
Zbl 0437.40003
[12] SCHINZEL A.-ŠALÁT T.:
Remarks on maximum and minimum exponents in factoring. Math. Slovaca 44 (1994), 505-514.
MR 1338424 |
Zbl 0821.11004
[13] SCHOENBERG I. J.:
The integrability of certain functions and related summability methods. Amer. Math. Monthly 66 (1959), 361-375.
MR 0104946 |
Zbl 0089.04002