Previous |  Up |  Next

Article

References:
[1] GRACE S. R.: Oscillation criteria for forced functional differential equations with deviating arguments. J. Math. Anal. Appl. 145 (1990), 63-88. MR 1031176 | Zbl 0724.34074
[2] GRACE S. R.: On the oscillatory and asymptotic behaviour of even order nonlinear differential equations with retarded arguments. J. Math. Anal. Appl. 137 (1989). 528-540. MR 0984975
[3] GRACE S. R.: Comparison theorems for forced functional differential equations. J. Math. Anal. Appl. 144 (1989), 168-182. MR 1022569 | Zbl 0683.34040
[4] GRACE S. R., LALLI B. S.: An oscillation criterion for certain second order strongly sublinear differential equations. J. Math. Anal. Appl. 123 (1987), 584-586. MR 0883711 | Zbl 0641.34031
[5] GRACE S. R., LALLI B. S.: Oscillatory and asymptotic behaviour of solutions of differential equations with deviating arguments. J. Math. Anal. Appl. 104 (1984). 79-91. MR 0765041
[6] KIGURADZE I. T.: On the oscillation of solutions of the equation $d^m u/dt^m +a(t)|u|^n \sgn u = 0$. (Russian), Mat. Sb. 65 (1964), 172-187. MR 0173060 | Zbl 0135.14302
[7] KITAMURA Y.: Oscillation of functional differential equations with general deviating arguments. Hiroshima Math. J. 15 (1985), 445-491. MR 0813572 | Zbl 0599.34091
[8] KUSANO T., NAITO M.: Comparison theorems for functional differential equations with deviating arguments. J. Math. Soc. Japan. 33 (1981), 509-532. MR 0620288 | Zbl 0494.34049
[9] LADAS G., STAVROULAKIS I. P.: Oscillations caused by several retarded and advanced arguments. 3. Differential Equations 44 (1982), 134-152. MR 0651691 | Zbl 0452.34058
[10] LALLI B. S., GRACE S. R.: Some oscillation criteria for delay differential equations of even order. 3. Math. Anal. Appl. 119 (1986), 164-170. MR 0856665 | Zbl 0608.34067
[11] PHILOS, CH. G.: On the existence of nonoscillatory solutions tending to zero at ∞ for differential equations with positive delays. Arch. Math. (Basel) 36 (1981). 168-178. MR 0619435
[12] WONG J. S. W., BURTON T. A: Some properties of $u'' +a(t)f(u)g(u') = 0.$. Monatsh. Math. 69 (1965), 364-374. MR 0186885
Partner of
EuDML logo