Previous |  Up |  Next

Article

References:
[1] BERAN L.: Orthomodular Lattices. Algebraic Approach, Academia/D. Reidel, Praha/Dordrecht, 1984. MR 0785005
[2] DE SIMONE A.-MUNDICI D.-NAVARA M.: A : Cantor-Bernstein theorem for a-complete MV-algebras. Czechoslovak Math. J. 53 (128) (2003), 437-447. MR 1983464
[3] DE SIMONE A.-NAVARA M.-PTÁK P.: On interval homogeneous orthomodular lattices. Comment. Math. Univ. Carolin. 42 (2001), 23-30. MR 1825370 | Zbl 1052.06007
[4] FREYTES H.: An algebraic version of the Cantor-Bernstein-Schroder Theorem. Czechoslovak Math. J. (To appear). MR 2086720
[5] JAKUBÍK J.: A theorem of Cant or-Bernstein type for orthogonally a-complete pseudo MV-algebras. Tatra Mt. Math. Publ. 22 (2002), 91-103. MR 1889037
[6] JENČA G.: A Cant or-Bernstein type theorem for effect algebras. Algebra Universalis 48 (2002), 399-411. MR 1967089
[7] KALMBACH G.: Orthomodular Lattices. Academic Press, London, 1983. MR 0716496 | Zbl 0528.06012
[8] KALLUS M.-TRNKOVÁ V.: Symmetries and retracts of quantum logics. Internat. J. Theor. Phys. 26 (1987), 1-9. MR 0890206 | Zbl 0626.06013
[9] Handbook of Boolean Algebras I. (J. D. Monk, R. Bonnet, eds.), North Holland Elsevier Science Publisher B.V., Amsterdam, 1989.
[10] PTÁK P.-PULMANNOVÁ S.: Orthomodular Structures as Quantum Logics. Kluwer, Dordrecht-Boston-London, 1991. MR 1176314 | Zbl 0743.03039
[11] TRNKOVÁ V.: Automorphisms and symmetries of quantum logics. Internat. J. Theor. Physics 28 (1989), 1195-1214. MR 1031603 | Zbl 0697.03034
Partner of
EuDML logo