[1] BERAN L.:
Orthomodular Lattices. Algebraic Approach, Academia/D. Reidel, Praha/Dordrecht, 1984.
MR 0785005
[2] DE SIMONE A.-MUNDICI D.-NAVARA M.: A :
Cantor-Bernstein theorem for a-complete MV-algebras. Czechoslovak Math. J. 53 (128) (2003), 437-447.
MR 1983464
[3] DE SIMONE A.-NAVARA M.-PTÁK P.:
On interval homogeneous orthomodular lattices. Comment. Math. Univ. Carolin. 42 (2001), 23-30.
MR 1825370 |
Zbl 1052.06007
[4] FREYTES H.:
An algebraic version of the Cantor-Bernstein-Schroder Theorem. Czechoslovak Math. J. (To appear).
MR 2086720
[5] JAKUBÍK J.:
A theorem of Cant or-Bernstein type for orthogonally a-complete pseudo MV-algebras. Tatra Mt. Math. Publ. 22 (2002), 91-103.
MR 1889037
[6] JENČA G.:
A Cant or-Bernstein type theorem for effect algebras. Algebra Universalis 48 (2002), 399-411.
MR 1967089
[8] KALLUS M.-TRNKOVÁ V.:
Symmetries and retracts of quantum logics. Internat. J. Theor. Phys. 26 (1987), 1-9.
MR 0890206 |
Zbl 0626.06013
[9]
Handbook of Boolean Algebras I. (J. D. Monk, R. Bonnet, eds.), North Holland Elsevier Science Publisher B.V., Amsterdam, 1989.
[10] PTÁK P.-PULMANNOVÁ S.:
Orthomodular Structures as Quantum Logics. Kluwer, Dordrecht-Boston-London, 1991.
MR 1176314 |
Zbl 0743.03039
[11] TRNKOVÁ V.:
Automorphisms and symmetries of quantum logics. Internat. J. Theor. Physics 28 (1989), 1195-1214.
MR 1031603 |
Zbl 0697.03034