Title:
|
Latin $(n\times n\times(n-2))$-parallelepipeds not completing to a Latin cube (English) |
Author:
|
Kochol, Martin |
Language:
|
English |
Journal:
|
Mathematica Slovaca |
ISSN:
|
0139-9918 |
Volume:
|
39 |
Issue:
|
2 |
Year:
|
1989 |
Pages:
|
121-125 |
. |
Category:
|
math |
. |
MSC:
|
05B15 |
MSC:
|
05B99 |
idZBL:
|
Zbl 0685.05010 |
idMR:
|
MR1018253 |
. |
Date available:
|
2009-09-25T10:16:10Z |
Last updated:
|
2012-08-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128702 |
. |
Reference:
|
[1] FU H.-L.: On latin (n x n x (n - 2))-parallelepipeds.Tamkang J. of Mathematics 17, 1986, 107-111. MR 0872667 |
Reference:
|
[2] HALL M., Jr.: An existence theorem for latin squares.Bull. Amer. Math. Soc. 51, 1945, 387-388. Zbl 0060.02801, MR 0013111 |
Reference:
|
[3] HORÁK P.: Latin parallelepipeds and cubes.J. Combinatorial Theory Ser. A 33, 1982, 213-214. Zbl 0492.05012, MR 0677575 |
Reference:
|
[4] HORÁK P.: Solution of four problems from Eger.1981, I. In: Graphs and Other Combinatorial Topics, Proc. of the Зrd Czechoslovak Symposium on Graph Theory, Teubner-Texte zur Mathematik, band 59, Leipzig, 1983, 115-117. Zbl 0525.05001, MR 0737023 |
Reference:
|
[5] RYSER H. J.: A combinatorial theorem with an application to latin rectangles.Proc. Amer. Math. Soc. 2, 1951, 550-552. Zbl 0043.01202, MR 0042361 |
. |