Previous |  Up |  Next

Article

Title: Latin $(n\times n\times(n-2))$-parallelepipeds not completing to a Latin cube (English)
Author: Kochol, Martin
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 39
Issue: 2
Year: 1989
Pages: 121-125
.
Category: math
.
MSC: 05B15
MSC: 05B99
idZBL: Zbl 0685.05010
idMR: MR1018253
.
Date available: 2009-09-25T10:16:10Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/128702
.
Reference: [1] FU H.-L.: On latin (n x n x (n - 2))-parallelepipeds.Tamkang J. of Mathematics 17, 1986, 107-111. MR 0872667
Reference: [2] HALL M., Jr.: An existence theorem for latin squares.Bull. Amer. Math. Soc. 51, 1945, 387-388. Zbl 0060.02801, MR 0013111
Reference: [3] HORÁK P.: Latin parallelepipeds and cubes.J. Combinatorial Theory Ser. A 33, 1982, 213-214. Zbl 0492.05012, MR 0677575
Reference: [4] HORÁK P.: Solution of four problems from Eger.1981, I. In: Graphs and Other Combinatorial Topics, Proc. of the Зrd Czechoslovak Symposium on Graph Theory, Teubner-Texte zur Mathematik, band 59, Leipzig, 1983, 115-117. Zbl 0525.05001, MR 0737023
Reference: [5] RYSER H. J.: A combinatorial theorem with an application to latin rectangles.Proc. Amer. Math. Soc. 2, 1951, 550-552. Zbl 0043.01202, MR 0042361
.

Files

Files Size Format View
MathSlov_39-1989-2_1.pdf 492.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo