Previous |  Up |  Next

Article

References:
[1] G. Birkhoff: Lattice theory, Amer. Math. Soc. Colloquium Publ. Vol. 25, Third Edition. Providence, 1967. MR 0227053
[2] C. C. Chang: Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc. 88 (1958), 467–490. DOI 10.1090/S0002-9947-1958-0094302-9 | MR 0094302 | Zbl 0084.00704
[3] C. C. Chang: A new proof of the completeness of the Lukasiewicz axioms. Trans. Amer. Math. Soc. 83 (1959), 74–80. MR 0122718 | Zbl 0093.01104
[4] D. Gluschankof: Cyclic ordered groups and $MV$-algebras. Czechoslovak Math. J. 43(1993), 249–263. MR 1211747 | Zbl 0795.06015
[5] M. Harminc: The cardinality of the system of all sequential convergences on an abelian lattice ordered group. Czech. Math. J. 37 (1987), 533–546. MR 0913986
[6] M. Harminc: Sequential convergences on lattice ordered groups. Czech. Math. J. 39 (1989), 232–238. MR 0992130
[7] J. Jakubík: Distributivity in lattice ordered groups. Czech. Math. J. 22 (1972), 108–125. MR 0325487
[8] J. Jakubík: Convergences and complete distributivity of lattice ordered groups. Math. Slov. 38 (1988), 269–272. MR 0977905
[9] J. Jakubík: Sequential convergences in Boolean algebras. Czech. Math. J. 38 (1988), 520–530. MR 0950306
[10] J. Jakubík: Lattice ordered groups having a largest convergence. Czech. Math. J. 39 (1989), 717–729. MR 1018008
[11] J. Jakubík: Convergences and higher degrees of distributivity of lattice ordered groups and of Boolean algebras. Czech. Math. J. 40 (1990), 453–458. MR 1065024
[12] J. Jakubík: Sequential convergences in lattices. Math. Bohemica 117 (1992), 239–250. MR 1184537
[13] J. Jakubík: Direct product decompositions of $MV$-algebras. Czech. Math. J 44 (1994), 725–739.
[14] D. Mundici: Interpretation of $AFC^*$-algebras in Lukasiewicz sentential calculus. Journ. Functional. Anal. 65 (1986), 15–63. DOI 10.1016/0022-1236(86)90015-7 | MR 0819173
Partner of
EuDML logo