[3] R. J. Ballieu and K. Peiffer:
Attractivity of the origin for the equation $\ddot{x} + f(t,x,\dot{x})\*|\dot{x}|^{\alpha } \dot{x} + g(x) = 0$. J. Math. Anal. Appl. 65 (1978), 321–332.
MR 0506309
[4] L. H. Erbe and Z. Liang:
Qualitative behavior of a generalized Emden-Fowler differential system. Czech. Math. J. 41 (116) (1991), 454–466.
MR 1117799
[5] S. R. Grace and B. S. Lalli:
Oscillation and convergence to zero of solutions of damped second order nonlinear differential equations. J. Math. Anal. Appl. 102 (1984), 539–548.
DOI 10.1016/0022-247X(84)90191-4 |
MR 0755982
[6] J. R. Graef, L. Hatvani, J. Karsai, and P. W. Spikes:
Boundedness and asymptotic behavior of solutions of second order nonlinear differential equations. Publ. Math. Debrecen 36 (1989), 85–99.
MR 1047021
[8] J. R. Graef and P. W. Spikes:
Asymptotic properties of solutions of a second order nonlinear differential equation. Publ. Math. Debrecen 24 (1977), 39–51.
MR 0454188
[9] J. R. Graef and P. W. Spikes:
Boundedness and convergence to zero of solutions of a forced second-order nonlinear differential equation. J. Math. Anal. Appl. 62 (1978), 295–309.
DOI 10.1016/0022-247X(78)90127-0 |
MR 0492527
[10] A. Halanay:
Differential Equations: Stability, Oscillations, Time Lag. Academic Press, New York, 1966.
MR 0216103
[11] L. Hatvani:
On the stability of the zero solution of certain second order non-linear differential equations. Acta Sci. Math. (Szeged) 32 (1971), 1–9.
MR 0306639 |
Zbl 0216.11704
[12] L. Hatvani:
On the asymptotic behavior of the solutions of $(p(t)x^{\prime })^{\prime } + q(t)f(x) = 0$. Publ. Math. Debrecen 19 (1972), 225–237.
MR 0326064
[13] L. Hatvani:
On the stability of the zero solution of nonlinear second order differential equations. Acta Sci. Math. (Szeged) (to appear).
MR 1243290 |
Zbl 0790.34046
[14] J. Karsai:
Attractivity theorems for second order nonlinear differential equations. Publ. Math. Debrecen 30 (1983), 303–310.
MR 0739492 |
Zbl 0601.34039
[15] J. Karsai:
Some attractivity results for second order nonlinear ordinary differential equations. in: Qualitative Theory of Differential Equations, B. Sz.-Nagy and L. Hatvani (eds.), Colloquia Mathematica Societatis János Bolyai, Vol. 53, North-Holland, Amsterdam, 1983, pp. 291–305.
MR 1062654
[16] Š. Kulcsár:
Boundedness, convergence and global stability of solutions of a nonlinear differential equation of the second order. Publ. Math. Debrecen 37 (1990), 193–201.
MR 1082298
[17] Š. Kulcsár:
Boundedness and stability of solutions of a certain nonlinear differential equation of the second order. Publ. Math. Debrecen 40 (1992), 57–70.
MR 1154490
[18] A. C. Lazer:
A stability condition for the differential equation $y^{\prime \prime } + p(x)y = 0$. Michigan Math. J. 12 (1965), 193–196.
DOI 10.1307/mmj/1028999309 |
MR 0176168
[19] K. S. Mamii and D. D. Mirzov:
Properties of solutions of a second-order nonlinear differential equation on a half-axis. Differentsial’nye Uravneniya 7 (1971), 1330–1332.
MR 0288349
[20] S. N. Olekhnik:
The boundedness of solutions of a second-order differential equation. Differentsial’nye Uravneniya 9 (1973), 1994–1999. (Russian)
MR 0333345 |
Zbl 0313.34031
[21] B. K. Sahoo:
Asymptotic properties of solutions of a second order differential equation. Bull. Calcutta Math. Soc. 83 (1991), 209–226.
MR 1199402 |
Zbl 0755.34028
[24] P. W. Spikes:
Some stability type results for a nonlinear differential equation. Rend. Math. (6) 9 (1976), 259–271.
MR 0409980 |
Zbl 0346.34034
[25] N. Vornicescu:
On the asymptotic behavior of the solutions of the differential equation $x^{\prime \prime } + fx = 0$. Bul. Stiint. Inst. Politehn. Cluj 14 (1971), 21–25.
MR 0318608
[26] P. X. Weng:
Boundedness and asymptotic behavior of solutions of a second-order functional differential equation. Ann. Differential Equations 8 (1992), 367–378.
MR 1192175 |
Zbl 0765.34053
[27] D. Willett and J. S. W. Wong:
Some properties of the solutions of $(p(t)x^{\prime })^{\prime } +q(t)f(x) = 0$. J. Math. Anal. Appl. 23 (1968), 15–24.
MR 0226117
[28] J. S. W. Wong:
Some stability conditions for $x^{\prime \prime } + a(t) x^{2n - 1} = 0$. SIAM J. Appl. Math. 15 (1967), 889–892.
DOI 10.1137/0115077 |
MR 0221042