Previous |  Up |  Next

Article

References:
[1] C. C. Chang: Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc. 88 (1958), 467–490. DOI 10.1090/S0002-9947-1958-0094302-9 | MR 0094302 | Zbl 0084.00704
[2] C. C. Chang: A new proof of the completeness of the Łukasiewicz axioms. Trans. Amer. Math. Soc. 93 (1959), 74–80. MR 0122718 | Zbl 0093.01104
[3] R. Cignoli: Complete and atomic algebras of the infinite valued Łukasiewicz logic. Studia Logica 50 (1991), 3–4375–384. DOI 10.1007/BF00370678 | MR 1170180 | Zbl 0753.03026
[4] L. Fuchs: Partially ordered algebraic systems. Pergamon Press, Oxford, 1963. MR 0171864 | Zbl 0137.02001
[5] D. Gluschankof: Cyclic ordered groups and $MV$-algebras. Czechoslov. Math. J. 43 (1993), 249–263. MR 1211747 | Zbl 0795.06015
[6] J. Jakubík: Direct product decompositions of $MV$-algebras. Czechoslov. Math. J (to appear).
[7] D. Mundici: Interpretation of $AFC^*$-algebras in Łukasiewicz sentential calculus. Jour. Functional. Anal. 65 (1986), 15–63. DOI 10.1016/0022-1236(86)90015-7 | MR 0819173
[8] D. Mundici: $MV$-algebras are categorically equivalent to bounded commutative $BCK$-algebras. Math. Japonica 31 (1986), 889–894. MR 0870978 | Zbl 0633.03066
[9] F. Šik: To the theory of lattice ordered groups. Czechoslov. Math. J. 6 (1956), 1–25. (Russian)
[10] T. Traczyk: On the variety of bounded commutative $BCK$-algebras. Math. Japonica 24 (1979), 238–282. MR 0550212 | Zbl 0422.03038
Partner of
EuDML logo