Previous |  Up |  Next

Article

References:
[1] L. Erbe: Existence of oscillatory solutions and asymptotic behaviour for a class of third order linear differential equations. Pacific J. Math. 64 (1976), 369–385. DOI 10.2140/pjm.1976.64.369 | MR 0435508
[2] M. Gregus: Third Order Differential Equations. D. Reidel Pub. Co., Boston, Tokyo, 1987. MR 0882545
[3] M. Hanan: Oscillation criteria for third order linear differential equations. Pacific J. Math. 11 (1961), 919–944. DOI 10.2140/pjm.1961.11.919 | MR 0145160 | Zbl 0104.30901
[4] G.D. Jones: Oscillation criteria for third order differential equations. SIAM J. Math. Anal. 7 (1976), 13–15. DOI 10.1137/0507002 | MR 0393656 | Zbl 0342.34019
[5] G. D. Jones: An asymptotic property of solutions of $y^{\prime \prime \prime } + py^{\prime } + qy = 0$. Pacific J. Math. 48 (1973), 135–138. MR 0326065 | Zbl 0264.34040
[6] G.D. Jones: Oscillation properties of third order differential equations. Rocky Mountain J. Math. 3 (1973), 507–513. DOI 10.1216/RMJ-1973-3-3-507 | MR 0355193 | Zbl 0267.34033
[7] G.D. Jones: Oscillation properties of $y^{\prime \prime } + p(x)y = f(x)$. Accademia Nazionale Del Lincei 57 (1974), 337–341. MR 0407375
[8] M.S. Keener: On the solutions of certain linear nonhomogeneous second order differential equations. Applicable Analysis 1 (1971), 57–63. DOI 10.1080/00036817108839006 | MR 0281997 | Zbl 0215.43802
[9] A.C. Lazer: The behaviour of solutions of the differential equation $y^{\prime \prime \prime } + p(x) y^{\prime } +q(x) y = 0$. Pacific J. Math. 17 (1966), 435–466. MR 0193332
[10] W. Leighton and Z. Nehari: On the oscillation of solutions of self adjoint linear differential equations of the fourth order. Trans. Amer. Math. Soc. 89 (1958), 325–377. DOI 10.1090/S0002-9947-1958-0102639-X | MR 0102639
[11] N. Parhi and P. Das: On asymptotic property of solutions of a class of third order differential equations. Proc. Amer. Math. Soc. 110 (1990), 387–393. DOI 10.1090/S0002-9939-1990-1019279-4 | MR 1019279
[12] N. Parhi and P. Das: On zeros of solutions of nonhomogeneous third order differential equations. Czech. Math. J. 41 (1991), 641–652. MR 1134954
[13] N. Parhi and P. Das: On asymptotic property of solutions of linear homogeneous third order differential equations. Boll. Un. Mat. Ital. (to appear). MR 1255647
[14] N. Parhi and S.K. Nayak: Nonoscillation of second order nonhomogeneous differential equations. J. Math. Anal. Appl. 102 (1984), 62–74. DOI 10.1016/0022-247X(84)90202-6 | MR 0751342
[15] N. Parhi and S. Parhi: Oscillation and nonoscillation theorems for nonhomogeneous third order differential equations. The Bulletin of the Institute of Mathematics, Academia Sinica 11 (1983), 125–139. MR 0723021
[16] N. Parhi and S. Parhi: Nonoscillation and asymptotic behaviour for forced nonlinear third order differential equations. The Bull. of the Institute of Mathematics. Academia Sinica 13 (1985), 367–384. MR 0866573
[17] N. Parhi and S. Parhi: On the behaviour of solutions of the differential equation $(r(t)y^{\prime \prime })^{\prime } + q(t)(y^{\prime })^\beta + p(t) y^\alpha = f(t)$. Annales Polonici Mathematici 47 (1986), 137–148. MR 0884931
[18] A. Skidmore and W. Leighton: On the differential equation $y^{\prime \prime }+p(x)y=f(x)$. J. Math. Anal. Appl. 43 (1973), 46–55. MR 0315213
[19] R.E. Sitter and S.C. Tefteller: Oscillation of a fourth order nonhomogeneous differential equation. J. Math. Anal. Appl. 59 (1977), 93–104. DOI 10.1016/0022-247X(77)90094-4 | MR 0442370
[20] S.C. Tefteller: Oscillation of second order nonhomogeneous linear differential equation. SIAM J. Appl. Math. 31 (1976), 461–467. DOI 10.1137/0131039 | MR 0450681
Partner of
EuDML logo