Previous |  Up |  Next

Article

References:
[1] R. A. Adams: Sobolev Spaces. Academic Press, New York, San Francisco, London, 1975. MR 0450957 | Zbl 0314.46030
[2] O. V. Besov, V. P. Il’in and S. M. Nikol’skii: Integral Representations of Functions and Imbedding Theorems I. Wiley, New York, London, Toronto, 1978. MR 0519341
[3] V. P. Il’in and V. A. Solonnikov: On some properties of differentiable functions of several variables. Transl. AMS 81 (1969), 67–90.
[4] H. Iwashita: $L_q$–$L_r$ estimates for solutions of the nonstationary Stokes equations in an exterior domain and the Navier-Stokes initial value problem in $L_q$ spaces. Math. Ann. 285 (1989), 265–288. DOI 10.1007/BF01443518 | MR 1016094
[5] A. Kufner, O. John and S. Fučík: Function Spaces. Noordhoff Int. Publ., Leyden, 1977. MR 0482102
[6] O. A. Ladyshenskaya, V. A. Solonnikov and N. N. Uralceva: Linear and Quasilinear Equations of Parabolic Type. Am. Math. Soc., Providence, R.I., 1968.
[7] W. v. Wahl: The equation $u^{\prime }+A(t)u=f$ in a Hilbert space and $L^p$-estimates for parabolic equations. J. London Math. Soc. 25 (1982), 483–497. MR 0657505
[8] W. v. Wahl: Vorlesung über das Außenraumproblem für die instationären Gleichungen von Navier-Stokes. Vorlesungsreihe No. 11, SFB 256, Universität Bonn, 1989.
[9] P. Weidemaier: The trace theorem $W_p^{2,1}(\Omega _T)\ni f\mapsto \nabla _xf\in W_p^{1-1/p,1/2-1/2p}(\partial \Omega _T)$ revisited. Comment. Math. Univ. Carolinae 32 (1991), 307–314. MR 1137792
[10] R. L. Wheeden, A. Zygmund: Measure and Integral. Dekker, New York, Basel, 1977. MR 0492146
Partner of
EuDML logo