[1] J. Adámek:
Theory of mathematical structures. D. Reidel Publ. Co., Dordrecht-Boston-Lancaster, 1983.
MR 0735079
[2] J. Adámek, T. Sturm:
On congruence lattices in a category. Czechoslovak Math. J. 29 (1979), 385–395.
MR 0536066
[3] P. M. Cohn:
Universal algebra. Harper & Row, New York-Evanston-London, 1965. Revised edition D. Reidel, Dordrecht 1981.
MR 0175948
[4] V. A. Gorbunov, V. P. Tumanov:
Construction of lattices of quasivarities, Mathematical logic and the theory of algorithms. Trudy Inst. Mat. 2, 12–44, Nauka, Sibirsk. Otdel., Novosibirsk 1982. (Russian)
MR 0720198
[5] G. Grätzer:
Universal algebra. 2nd Ed., Springer-Verlag, New York-Heidelberg-Berlin, 1979.
MR 0538623
[6] G. Grätzer:
General lattice theory. Birkhäuser Verlag, Basel and Stuttgart, 1978.
MR 0504338
[7] P. A. Grillet:
Regular categories. Lecture Notes in Math. vol. 236, Springer-Verlag, New York-Heidelberg-Berlin, 1971.
MR 0289599
[8] A. I. Mal’cev: Algebraic system. Springer-Verlag, New York-Heidelberg-Berlin, 1973.
[9] P. Pudlák, J. Tůma:
Every finite lattice can be embedded into the lattice of all equivalences over a finite set. Algebra Universalis 10 (1980), 74–95.
DOI 10.1007/BF02482893 |
MR 0552159
[10] Z. Rozenský:
Verbände von Kernel der Abbildungen, die orthogonaltreu sind. Časopis Pěst. Mat. 104 (1979), 134–148.
MR 0531925
[11] J. Ryšlinková:
The characterization of $m$-compact elements in some lattices. Czechoslovak Math. J. 29 (1979), 252–267.
MR 0529513
[12] T. Sturm:
Verbände von Kernen isotoner Abbildungen. Czechoslovak Math. J. 22 (1972), 126–144.
MR 0307919 |
Zbl 0346.06002
[13] T. Sturm:
Lattices of convex iquivalences. Czechoslovak Math. J. 29 (1979).
MR 0536067
[14] T. Sturm:
Closure operators which preserve the $m$-compactness. Boll. Un. Mat. Ital. (6) 1-B (1982), 197–209.
MR 0654931 |
Zbl 0493.06001