Previous |  Up |  Next

Article

References:
[1] P. Conrad: The structure of a lattice-ordered group with a finite number of disjoint elements. Michigan Math. J. 7 (1960), 171–180. DOI 10.1307/mmj/1028998387 | MR 0116059 | Zbl 0103.01501
[2] L. Fuchs: Partially ordered algebraic systems. Pergamon Press, Oxford, 1963. MR 0171864 | Zbl 0137.02001
[3] M. Harminc: Sequential convergence on abelian lattice-ordered groups. Convergence structures 1984. Matem. Research, Band 24, Akademie Verlag, Berlin, 1985, pp. 153–158. MR 0835480
[4] M. Harminc: The cardinality of the system of all convergences on an abelian lattice ordered group. Czechoslov. Math. J. 37 (1987), 533–546. MR 0913986
[5] M. Harminc: Sequential convergences on lattice ordered groups. Czechoslov. Math. J. 39 (1989), 232–238. MR 0992130
[6] M. Harminc: Convergences on lattice ordered groups. Disertation, Math. Inst. Slovac Acad. Sci., 1986. (Slovak)
[7] M. Harminc, J. Jakubík: Maximal convergences and minimal proper convergences in $\ell $-groups. Czechoslov. Math. J. 39 (1989), 631–640. MR 1017998
[8] J. Jakubík: Konvexe Ketten in $\ell $-Gruppen. Časop. pěst. matem. 84 (1959), 53–63. MR 0104740
[9] J. Jakubík: Convergences and complete distributivity of lattice ordered groups. Math. Slovaca 38 (1988), 269–272. MR 0977905
[10] J. Jakubík: On some types of kernels of a convergence $\ell $-group. Czechoslov. Math. J. 39 (1989), 239–247. MR 0992131
[11] J. Jakubík: Lattice ordered groups having a largest convergence. Czechoslov. Math. J. 39 (1989), 717–729. MR 1018008
[12] J. Jakubík: Convergences and higher degrees of distributivity of lattice ordered groups and of Boolean algebras. Czechoslov. Math. J. 40 (1990), 453–458. MR 1065024
[13] B. Z. Vulih: Vvedenie v teoriyu poluuporyadoqennyh prostranstv. Moskva, 1961.
Partner of
EuDML logo