[3] M. Harminc:
Sequential convergence on abelian lattice-ordered groups. Convergence structures 1984. Matem. Research, Band 24, Akademie Verlag, Berlin, 1985, pp. 153–158.
MR 0835480
[4] M. Harminc:
The cardinality of the system of all convergences on an abelian lattice ordered group. Czechoslov. Math. J. 37 (1987), 533–546.
MR 0913986
[5] M. Harminc:
Sequential convergences on lattice ordered groups. Czechoslov. Math. J. 39 (1989), 232–238.
MR 0992130
[6] M. Harminc: Convergences on lattice ordered groups. Disertation, Math. Inst. Slovac Acad. Sci., 1986. (Slovak)
[7] M. Harminc, J. Jakubík:
Maximal convergences and minimal proper convergences in $\ell $-groups. Czechoslov. Math. J. 39 (1989), 631–640.
MR 1017998
[8] J. Jakubík:
Konvexe Ketten in $\ell $-Gruppen. Časop. pěst. matem. 84 (1959), 53–63.
MR 0104740
[9] J. Jakubík:
Convergences and complete distributivity of lattice ordered groups. Math. Slovaca 38 (1988), 269–272.
MR 0977905
[10] J. Jakubík:
On some types of kernels of a convergence $\ell $-group. Czechoslov. Math. J. 39 (1989), 239–247.
MR 0992131
[11] J. Jakubík:
Lattice ordered groups having a largest convergence. Czechoslov. Math. J. 39 (1989), 717–729.
MR 1018008
[12] J. Jakubík:
Convergences and higher degrees of distributivity of lattice ordered groups and of Boolean algebras. Czechoslov. Math. J. 40 (1990), 453–458.
MR 1065024
[13] B. Z. Vulih: Vvedenie v teoriyu poluuporyadoqennyh prostranstv. Moskva, 1961.