Previous |  Up |  Next

Article

Keywords:
nonexpansive mapping; strict pseudocontraction; fixed point; variational inequality; relaxed cocoercive mapping
Summary:
In this paper, we introduce a general iterative scheme to investigate the problem of finding a common element of the fixed point set of a strict pseudocontraction and the solution set of a variational inequality problem for a relaxed cocoercive mapping by viscosity approximate methods. Strong convergence theorems are established in a real Hilbert space.
References:
[1] Browder, F. E.: Fixed point theorems for noncompact mappings in Hilbert spaces. Proc. Natl. Acad. Sci. USA 53 (1965), 1272–1276. DOI 10.1073/pnas.53.6.1272 | MR 0178324
[2] Browder, F. E.: Nonlinear operators and nonlinear equations of evolution in Banach spaces. Proc. Sympos. Pure Math. 18 (1976), 78–81. MR 0405188 | Zbl 0327.47022
[3] Bruck, R. E.: Properties of fixed point sets of nonexpansive mappings in Banach spaces. Trans. Amer. Math. Soc. 179 (1973), 251–262. DOI 10.1090/S0002-9947-1973-0324491-8 | MR 0324491 | Zbl 0265.47043
[4] Ceng, L. C., Wang, C. Y., Yao, J. C.: Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities. Math. Methods Oper. Res. 67 (2008), 375–390. DOI 10.1007/s00186-007-0207-4 | MR 2403714 | Zbl 1147.49007
[5] Ceng, L. C., Yao, J. C.: An extragradient-like approximation method for variational inequality problems and fixed point problems. Appl. Math. Comput. 190 (2007), 205–215. DOI 10.1016/j.amc.2007.01.021 | MR 2335441 | Zbl 1124.65056
[6] Chen, J. M., Zhang, L. J., Fan, T. G.: Viscosity approximation methods for nonexpansive mappings and monotone mappings. J. Math. Anal. Appl. 334 (2007), 1450–1461. DOI 10.1016/j.jmaa.2006.12.088 | MR 2338673 | Zbl 1137.47307
[7] Gabay, D.: Applications of the Method of Multipliers to Variational Inequalities, Augmented Lagrangian Methods. North-Holland, Amsterdam.
[8] Iiduka, H., Takahashi, W.: Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings. Nonlinear Anal. 61 (2005), 341–350. DOI 10.1016/j.na.2003.07.023 | MR 2123081 | Zbl 1093.47058
[9] Korpelevich, G. M.: An extragradient method for finding saddle points and for other problems. Ekonomika i matematicheskie metody 12 (1976), 747–756. MR 0451121
[10] Moudafi, A.: Viscosity approximation methods for fixed points problems. Appl. Math. Comput. 241 (2000), 46–55. MR 1738332 | Zbl 0957.47039
[11] Nadezhkina, N., Takahashi, W.: Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 128 (2006), 191–201. DOI 10.1007/s10957-005-7564-z | MR 2201895 | Zbl 1130.90055
[12] Noor, M. A.: Some developments in general variational inequalities. Appl. Math. Comput. 152 (2004), 199–277. MR 2050063 | Zbl 1134.49304
[13] Noor, M. A., Yao, Y.: Three-step iterations for variational inequalities and nonexpansive mappings. Appl. Math. Comput. 190 (2007), 1312–1321. DOI 10.1016/j.amc.2007.02.013 | MR 2339724 | Zbl 1128.65051
[14] Qin, X., Shang, M., Su, Y.: Strong convergence of a general iterative algorithm for equilibrium problems and variational inequality problems. Math. Comput. Modelling 48 (2008), 1033–1046. DOI 10.1016/j.mcm.2007.12.008 | MR 2458216 | Zbl 1187.65058
[15] Qin, X., Shang, M., Zhou, H.: Strong convergence of a general iterative method for variational inequality problems and fixed point problems in Hilbert spaces. Appl. Math. Comput. 200 (2008), 242–253. DOI 10.1016/j.amc.2007.11.004 | MR 2421640 | Zbl 1147.65048
[16] Stampacchia, G.: ormes bilineaires coercivites sur les ensembles convexes. C. R. Acad. Sci. Paris Sér. I Math. 258 (1964), 4413–4416. MR 0166591
[17] Suzuki, T.: Strong convergence of Krasnoselskii and Mann’s type sequences for one-parameter nonexpansive semigroups without Bochne integrals. J. Math. Anal. Appl. 305 (2005), 227–239. DOI 10.1016/j.jmaa.2004.11.017 | MR 2128124
[18] Takahashi, W., Toyoda, M.: Weak convergence theorems for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 118 (2003), 417–428. DOI 10.1023/A:1025407607560 | MR 2006529 | Zbl 1055.47052
[19] Verma, R. U.: Generalized system for relaxed cocoercive variational inequalities and its projection methods. J. Optim. Theory Appl. 121 (2004), 203–210. DOI 10.1023/B:JOTA.0000026271.19947.05 | MR 2062977
[20] Verma, R. U.: General convergence analysis for two-step projection methods and application to variational problems. Appl. Math. Lett. 18 (2005), 1286–1292. DOI 10.1016/j.aml.2005.02.026 | MR 2170885
[21] Xu, H. K.: Iterative algorithms for nonlinear operators. J. London Math. Soc. 66 (2002), 240–256. DOI 10.1112/S0024610702003332 | MR 1911872 | Zbl 1013.47032
[22] Yao, Y., Yao, J. C.: On modified iterative method for nonexpansive mappings and monotone mappings. Appl. Math. Comput. 186 (2007), 1551–1558. DOI 10.1016/j.amc.2006.08.062 | MR 2316950 | Zbl 1121.65064
[23] Zhou, H.: Convergence theorems of fixed points for $k$-strict pseudo-contractions in Hilbert spaces. Nonlinear Anal. 69 (2008), 456–462. DOI 10.1016/j.na.2007.05.032 | MR 2426262
[24] Zhou, H.: Convergence theorems of fixed points for Lipschitz pseudo-contractions in Hilbert spaces. J. Math. Anal. Appl. 343 (2008), 546–556. DOI 10.1016/j.jmaa.2008.01.045 | MR 2412149 | Zbl 1140.47058
Partner of
EuDML logo