Previous |  Up |  Next

Article

Keywords:
automorphism group of a sporadic simple group; prime graph
Summary:
In this paper as the main result, we determine finite groups with the same prime graph as the automorphism group of a sporadic simple group, except $J_2$.
References:
[1] Chen, Z. M., Shi, W. J.: On simple $C_{pp}$ groups. J. Southwest China Teachers Univ. 18 (3) (1993), 249–256.
[2] Chigira, N., Iiyori, N., Yamaki, H.: Non-abelian Sylow subgroups of finite groups of even order. Invent. Math. 139 (2000), 525–539. DOI 10.1007/s002229900040 | MR 1738059 | Zbl 0961.20017
[3] Conway, J., Curtis, R., Norton, S., Parker, R., Wilson, R.: Atlas of finite groups. Clarendon Press, Oxford, 1985. Zbl 0568.20001
[4] Crescenzo, P.: A diophantine equation which arises in the theory of finite groups. Adv. Math. 17 (1975), 25–29. DOI 10.1016/0001-8708(75)90083-3 | MR 0371812 | Zbl 0305.10016
[5] Gorenstein, D.: Finite groups. Harper and Row, New York, 1968. MR 0231903 | Zbl 0185.05701
[6] Gruenberg, K. W., Roggenkamp, K. W.: Decomposition of the augmentation ideal and of the relation modules of a finite group. Proc. London Math. Soc. (3) 31 (2) (1975), 149–166. MR 0374247 | Zbl 0313.20004
[7] Hagie, M.: The prime graph of a sporadic simple group. Comm. Algebra 31 (9) (2003), 4405–4424. DOI 10.1081/AGB-120022800 | MR 1995543 | Zbl 1031.20009
[8] Iranmanesh, A., Alavi, S. H., Khosravi, B.: A characterization of $PSL(3,q)$ where $q$ is an odd prime power. J. Pure Appl. Algebra 170 (2-3) (2002), 243–254. DOI 10.1016/S0022-4049(01)00113-X | MR 1904845 | Zbl 1001.20005
[9] Janson, C., Lux, K., Parker, R. A., Wilson, R. A.: An atlas of Brauer characters. Clarendon Press, Oxford, 1995. MR 1367961
[10] Khosravi, A., Khosravi, B.: A new characterization of almost sporadic groups. J. Algebra Appl. 1 (3) (2002), 267–279. DOI 10.1142/S021949880200015X | MR 1932151 | Zbl 1033.20013
[11] Khosravi, B.: $n$-recognition by prime graph ofthe simple group $PSL(2,q)$. J Algebra Appl. 7 (6) (2008), 735–748. DOI 10.1142/S0219498808003090 | MR 2483329
[12] Mazurov, V. D.: Characterization of finite groups by sets of orders of their elements. Algebra and Logic 36 (1) (1997), 23–32. DOI 10.1007/BF02671951 | MR 1454690
[13] Mazurov, V. D.: Recognition of finite groups by a set of orders of their elements. Algebra and Logic 37 (6) (1998), 371–379. DOI 10.1007/BF02671691 | MR 1680412 | Zbl 0917.20021
[14] Praeger, C. E., Shi, W. J.: A characterization of some alternating and symmetric grops. 22 (5) (1994), 1507–1530. MR 1264726
[15] Shi, W., Bi, J.: A characteristic property for each finite projective special linear group. Lecture Notes in Math. 1456 (1990), 171–180. DOI 10.1007/BFb0100738 | MR 1092230 | Zbl 0718.20009
[16] Zsigmondy, K.: Zur Theorie der Potenzreste. Monatsh. Math. Phys. 3 (1892), 265–284. MR 1546236
Partner of
EuDML logo