Previous |  Up |  Next

Article

Keywords:
nonlinear wave equations; quenching; convergence; numerical quenching time
Summary:
In this paper, we consider the following initial-boundary value problem \[ {\left\rbrace \begin{array}{ll} u_{tt}(x,t)=\varepsilon Lu(x,t)+f\big (u(x,t)\big )\quad \mbox {in}\quad \Omega \times (0,T)\,,\\ u(x,t)=0 \quad \mbox {on}\quad \partial \Omega \times (0,T)\,, \\ u(x,0)=0 \quad \mbox {in}\quad \Omega \,, \\ u_t(x,0)=0 \quad \mbox {in}\quad \Omega \,, \end{array}\right.}\] where $\Omega $ is a bounded domain in $\mathbb{R}^N$ with smooth boundary $\partial \Omega $, $L$ is an elliptic operator, $\varepsilon $ is a positive parameter, $f(s)$ is a positive, increasing, convex function for $s\in (-\infty ,b)$, $\lim _{s\rightarrow b}f(s)=\infty $ and $\int _0^b\frac{ds}{f(s)}<\infty $ with $b=\operatorname{const}>0$. Under some assumptions, we show that the solution of the above problem quenches in a finite time and its quenching time goes to that of the solution of the following differential equation \[ {\left\rbrace \begin{array}{ll} \alpha ^{\prime \prime }(t)=f(\alpha (t))\,,&\quad t>0\,, \\ \alpha (0)=0\,,\quad \alpha ^{\prime }(0)=0\,, \end{array}\right.}\] as $\varepsilon $ goes to zero. We also show that the above result remains valid if the domain $\Omega $ is large enough and its size is taken as parameter. Finally, we give some numerical results to illustrate our analysis.
References:
[1] Abia, L. M., López-Marcos, J. C., Martínez, J.: On the blow-up time convergence of semidiscretizations of reaction-diffusion equations. Appl. Numer. Math. 26 (1998), 399–414. DOI 10.1016/S0168-9274(97)00105-0 | MR 1612360
[2] Boni, T. K.: On quenching of solution for some semilinear parabolic equation of second order. Bull. Belg. Math. Soc. 5 (2000), 73–95. MR 1741748
[3] Boni, T. K.: Extinction for discretizations of some semilinear parabolic equations. C. R. Acad. Sci. Paris Sér. I Math. 333 (8) (2001), 795–800. DOI 10.1016/S0764-4442(01)02078-X | MR 1868956 | Zbl 0999.35004
[4] Chang, H., Levine, H. A.: The quenching of solutions of semilinear hyperbolic equations. SIAM J. Math. Anal. 12 (1982), 893–903. DOI 10.1137/0512075 | MR 0635242
[5] Friedman, A., Lacey, A. A.: The blow-up time for solutions of nonlinear heat equations with small diffusion. SIAM J. Math. Anal. 18 (1987), 711–721. DOI 10.1137/0518054 | MR 0883563 | Zbl 0643.35013
[6] Glassey, R. T.: Blow-up theorems for nonlinear wave equations. Math. Z. 132 (1973), 183–203. DOI 10.1007/BF01213863 | MR 0340799 | Zbl 0247.35083
[7] Kaplan, S.: On the growth of solutions of quasi-linear parabolic equations. Comm. Pure Appl. Math. 16 (1963), 305–330. DOI 10.1002/cpa.3160160307 | MR 0160044 | Zbl 0156.33503
[8] Keller, J. B.: On solutions of nonlinear wave equations. Comm. Pure Appl. Math. 10 (1957), 523–530. DOI 10.1002/cpa.3160100404 | MR 0096889 | Zbl 0090.31802
[9] Levine, H. A.: Instability and nonexistence of global solutions to nonlinear wave equations of the form $\rho u_{tt}=-Av+F(u)$. Trans. Amer. Math. Soc. 192 (1974), 1–21. MR 0344697
[10] Levine, H. A.: Some additional remarks on the nonexistence of global solutions to nonlinear wave equations. SIAM J. Math. Anal. 5 (1974), 138–146. DOI 10.1137/0505015 | MR 0399682 | Zbl 0243.35069
[11] Levine, H. A.: The quenching solutions of linear parabolic and hyperbolic equations with nonlinear boundary conditions. SIAM J. Math. Anal. 14 (1983), 1139–1153. DOI 10.1137/0514088 | MR 0718814
[12] Levine, H. A.: The phenomenon of quenching: A survey . Proc. VIth International Conference on Trends in the Theory and Practice of Nonlinear Analysis (Lakshmitanthan, V., ed.), Elservier Nork-Holland, New York, 1985. MR 0817500 | Zbl 0581.35037
[13] Levine, H. A., Smiley, M. W.: The quenching of solutions of linear parabolic and hyperbolic equations with nonlinear boundary conditions. J. Math. Anal. Appl. 103 (1984), 409–427. MR 0718814
[14] Protter, M. H., Weinberger, H. F.: Maximum Principles in Differential Equations. Prentice Hall, Englewood Cliffs, NJ, 1967. MR 0219861
[15] Rammaha, M. A.: On the quenching of solutions of the wave equation with a nonlinear boundary condition. J. Reine Angew. Math. 407 (1990), 1–18. MR 1048525 | Zbl 0698.35088
[16] Reed, M.: Abstract nonlinear wave equations. Lecture Notes in Math., vol. 507, Springer-Verlag Berlin, New-York, 1976. MR 0605679 | Zbl 0319.35060
[17] Sattinger, D. H.: On global solution of nonlinear hyperbolic equations. Arch. Rational Mech. Anal. 30 (1968), 148–172. DOI 10.1007/BF00250942 | MR 0227616 | Zbl 0159.39102
[18] Smith, R. A.: On a hyperbolic quenching problem in several dimensions. SIAM J. Math. Anal. 20 (1989), 1081–1094. DOI 10.1137/0520072 | MR 1009347 | Zbl 0687.35056
[19] Walter, W.: Differential-und Integral-Ungleichungen. Springer, Berlin, 1954.
Partner of
EuDML logo