[1] Abia, L. M., López-Marcos, J. C., Martínez, J.:
On the blow-up time convergence of semidiscretizations of reaction-diffusion equations. Appl. Numer. Math. 26 (1998), 399–414.
DOI 10.1016/S0168-9274(97)00105-0 |
MR 1612360
[2] Boni, T. K.:
On quenching of solution for some semilinear parabolic equation of second order. Bull. Belg. Math. Soc. 5 (2000), 73–95.
MR 1741748
[4] Chang, H., Levine, H. A.:
The quenching of solutions of semilinear hyperbolic equations. SIAM J. Math. Anal. 12 (1982), 893–903.
DOI 10.1137/0512075 |
MR 0635242
[9] Levine, H. A.:
Instability and nonexistence of global solutions to nonlinear wave equations of the form $\rho u_{tt}=-Av+F(u)$. Trans. Amer. Math. Soc. 192 (1974), 1–21.
MR 0344697
[11] Levine, H. A.:
The quenching solutions of linear parabolic and hyperbolic equations with nonlinear boundary conditions. SIAM J. Math. Anal. 14 (1983), 1139–1153.
DOI 10.1137/0514088 |
MR 0718814
[12] Levine, H. A.:
The phenomenon of quenching: A survey . Proc. VIth International Conference on Trends in the Theory and Practice of Nonlinear Analysis (Lakshmitanthan, V., ed.), Elservier Nork-Holland, New York, 1985.
MR 0817500 |
Zbl 0581.35037
[13] Levine, H. A., Smiley, M. W.:
The quenching of solutions of linear parabolic and hyperbolic equations with nonlinear boundary conditions. J. Math. Anal. Appl. 103 (1984), 409–427.
MR 0718814
[14] Protter, M. H., Weinberger, H. F.:
Maximum Principles in Differential Equations. Prentice Hall, Englewood Cliffs, NJ, 1967.
MR 0219861
[15] Rammaha, M. A.:
On the quenching of solutions of the wave equation with a nonlinear boundary condition. J. Reine Angew. Math. 407 (1990), 1–18.
MR 1048525 |
Zbl 0698.35088
[16] Reed, M.:
Abstract nonlinear wave equations. Lecture Notes in Math., vol. 507, Springer-Verlag Berlin, New-York, 1976.
MR 0605679 |
Zbl 0319.35060
[19] Walter, W.: Differential-und Integral-Ungleichungen. Springer, Berlin, 1954.