Previous |  Up |  Next

Article

Keywords:
exponential operator; operator identity; $q$-series identity
Summary:
In this paper, we first give several operator identities which extend the results of Chen and Liu, then make use of them to two $q$-series identities obtained by the Euler expansions of $(a;q)_{\infty }$ and $\frac{1}{(a;q)_{\infty }}$. Several $q$-series identities are obtained involving a $q$-series identity in Ramanujan’s Lost Notebook.
References:
[1] Andrews, G. E.: Ramanujan’s “Lost” Notebook I, Partial $\theta $-function. Adv. Math. 41 (1981), 137–172. DOI 10.1016/0001-8708(81)90013-X
[2] Andrews, G. E.: Ramanujan: Essays and Surveys. ch. An introduction to Ramanujan's “Lost” Notebook, pp. 165–184, 2001.
[3] Andrews, G. E., Askey, R., Roy, R.: Special Function. Cambridge University Press, Cambridge, 1999.
[4] Chen, W. Y. C., Liu, Z.-G.: Parameter augmentation for basic hypergeometric series, II. J. Combin. Theory Ser. A 80 (1997), 175–195. DOI 10.1006/jcta.1997.2801 | MR 1485133 | Zbl 0901.33009
[5] Chen, W. Y. C., Liu, Z.-G.: Mathematical essays in honor of Gian-Carlo Rota. ch. Parameter augmentation for basic hypergeometric series, I, pp. 111–129, Birkhäuser, Basel, 1998. MR 1627355
[6] Gasper, G. G., Rahman, M.: Basic Hypergeometric Series. Encyclopedia of Mathematics and Its Applications, Second edition, vol. 96, Cambridge University Press, 2004. MR 2128719 | Zbl 1129.33005
[7] Liu, Z.-G.: A new proof of the Nassrallah-Rahman integral. Acta Math. Sinica 41 (2) (1998), 405–410. MR 1656510 | Zbl 1010.33009
[8] Liu, Z.-G.: Some operator identities and $q$-series transformation formulas. Discrete Math. 265 (2003), 119–139. DOI 10.1016/S0012-365X(02)00626-X | MR 1969370 | Zbl 1021.05010
[9] Rogers, L. J.: On the expansion of some infinite products. Proc. London Math. Soc. 24 (1893), 337–352.
[10] Rogers, L. J.: Second Memoir on the expansion of certain infinite products. Proc. London Math. Soc. 25 (1894), 318–343.
[11] Rogers, L. J.: Third Memoir on the expansion of certain infinite products. Proc. London Math. Soc. 26 (1896), 15–32.
[12] Roman, S.: More on the umbral calculus, with emphasis on the $q$-umbral calculus. J. Math. Anal. Appl. 107 (1985), 222–254. DOI 10.1016/0022-247X(85)90367-1 | MR 0786026 | Zbl 0654.05004
[13] Zhang, Z. Z., Liu, M. X.: Applications of operator identities to the multiple $q$-binomial theorem and $q$-Gauss summation theorem. Discrete Math. 306 (2006), 1424–1437. DOI 10.1016/j.disc.2006.01.025 | MR 2237725 | Zbl 1095.05002
[14] Zhang, Z. Z., Wang, J.: Two operator identities and their applications to terminating basic hypergeometric series and $q$-integrals. J. Math. Anal. Appl. 312 (2) (2005), 653–665. DOI 10.1016/j.jmaa.2005.03.064 | MR 2179103 | Zbl 1081.33032
Partner of
EuDML logo