Previous |  Up |  Next

Article

Title: On rainbowness of semiregular polyhedra (English)
Author: Jendroľ, Stanislav
Author: Schrötter, Štefan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 2
Year: 2008
Pages: 359-380
Summary lang: English
.
Category: math
.
Summary: We introduce the rainbowness of a polyhedron as the minimum number $k$ such that any colouring of vertices of the polyhedron using at least $k$ colours involves a face all vertices of which have different colours. We determine the rainbowness of Platonic solids, prisms, antiprisms and ten Archimedean solids. For the remaining three Archimedean solids this parameter is estimated. (English)
Keyword: rainbowness
Keyword: Platonic solids
Keyword: prisms
Keyword: antiprisms
Keyword: Archimedean solids
MSC: 05C15
MSC: 51M20
MSC: 52B05
idZBL: Zbl 1174.51010
idMR: MR2411095
.
Date available: 2009-09-24T11:55:21Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128263
.
Reference: [1] V. G. Ashkinuze: On the number of semiregular polyhedra.Mat. Prosvesc. 1 (1957), 107–118. (Russian)
Reference: [2] H. S. M. Coxeter: Regular Potytopes.Dover Pub. New York, 1973. MR 0370327
Reference: [3] P. R. Cromwell: Polyhedra.Cambridge University Press, 1997. Zbl 0888.52012, MR 1458063
Reference: [4] L. Fejes Tóth: Regular Figures.Pergamon Press, Oxford, 1964. MR 0165423
Reference: [5] B. Grünbaum: Convex Polytopes (2nd edition).Springer Verlag, 2004. MR 1976856
Reference: [6] E. Jucovič: Convex Polyhedra.Veda, Bratislava, 1981. (Slovak)
Reference: [7] S. Negami: Looseness ranges of triangulations on closed surfaces.Discrete Math. 303 (2005), 167–174. Zbl 1084.05023, MR 2181051, 10.1016/j.disc.2005.01.010
Reference: [8] J. Zaks: Semi-regular polyhedra and maps.Geom. Dedicata 7 (1978), 465–478. Zbl 0393.51009, MR 0512122
.

Files

Files Size Format View
CzechMathJ_58-2008-2_5.pdf 378.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo