Previous |  Up |  Next

Article

Keywords:
mixed graphs; Laplacian eigenvectors
Summary:
Let $G$ be a mixed graph. The eigenvalues and eigenvectors of $G$ are respectively defined to be those of its Laplacian matrix. If $G$ is a simple graph, [M. Fiedler: A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory, Czechoslovak Math. J. 25 (1975), 619–633] gave a remarkable result on the structure of the eigenvectors of $G$ corresponding to its second smallest eigenvalue (also called the algebraic connectivity of $G$). For $G$ being a general mixed graph with exactly one nonsingular cycle, using Fiedler’s result, we obtain a similar result on the structure of the eigenvectors of $G$ corresponding to its smallest eigenvalue.
References:
[1] R. B.  Bapat, S.  Pati: Algebraic connectivity and the characteristic set of a graph. Linear Multilinear Algebra 45 (1998), 247–273. DOI 10.1080/03081089808818590 | MR 1671627
[2] R. B.  Bapat, J. W.  Grossman, D. M.  Kulkarni: Generalized matrix tree theorem for mixed graphs. Linear Multilinear Algebra 46 (1999), 299–312. DOI 10.1080/03081089908818623 | MR 1729196
[3] R. B.  Bapat, J. W.  Grossman, D. M.  Kulkarni: Edge version of the matrix tree theorem for trees. Linear Multilinear Algebra 47 (2000), 217–229. DOI 10.1080/03081080008818646 | MR 1785029
[4] J. A.  Bondy, U. S. R.  Murty: Graph Theory with Applications. Elsevier, New York, 1976. MR 0411988
[5] F. R. K.  Chung: Spectral Graph Theory. Conference Board of the Mathematical Science, No.  92. Am. Math. Soc., Providence, 1997. MR 1421568
[6] Y.-Z.  Fan: On spectra integral variations of mixed graph. Linear Algebra Appl. 374 (2003), 307–316. DOI 10.1016/S0024-3795(03)00575-5 | MR 2008794
[7] M.  Fiedler: Algebraic connectivity of graphs. Czechoslovak Math.  J. 23 (1973), 298–305. MR 0318007 | Zbl 0265.05119
[8] M.  Fiedler: A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory. Czechoslovak Math.  J. 25 (1975), 619–633. MR 0387321
[9] J. W.  Grossman, D. M.  Kulkarni, I. E.  Schochetman: Algebraic graph theory without orientations. Linear Algebra Appl. 212/213 (1994), 289–308. MR 1306983
[10] J. M.  Guo, S. W.  Tan: A relation between the matching number and the Laplacian spectrum of a graph. Linear Algebra Appl. 325 (2001), 71–74. MR 1810095
[11] R. A.  Horn, C. R.  Johnson: Matrix Analysis. Cambridge Univ. Press, Cambridge, 1985. MR 0832183
[12] S.  Kirkland, S.  Fallat: Perron components and algebraic connectivity for weighted graphs. Linear Multilinear Algebra 44 (1998), 131–148. DOI 10.1080/03081089808818554 | MR 1674228
[13] S.  Kirkland, M.  Neumann, B.  Shader: Characteristic vertices of weighted trees via Perron values. Linear Multilinear Algebra 40 (1996), 311–325. DOI 10.1080/03081089608818448 | MR 1384650
[14] L. S.  Melnikov, V. G.  Vizing: The edge chromatic number of a directed/mixed multi-graph. J.  Graph Theory 31 (1999), 267–273. DOI 10.1002/(SICI)1097-0118(199908)31:4<267::AID-JGT1>3.3.CO;2-4 | MR 1698744
[15] R.  Merris: Laplacian matrices of graphs: a survey. Linear Algebra Appl. 197/198 (1994), 143–176. MR 1275613 | Zbl 0802.05053
[16] B.  Mohar: Some applications of Laplacian eigenvalues of graphs. In: Graph Symmetry, G. Hahn and G. Sabidussi (eds.), Kluwer, Dordrecht, 1997, pp. 225–275. MR 1468791
[17] X.-D.  Zhang, J.-S.  Li: The Laplacian spectrum of a mixed graph. Linear Algebra Appl. 353 (2002), 11–20. MR 1918746 | Zbl 1003.05073
Partner of
EuDML logo