Article
Keywords:
lattice ordered group; weak homogeneity; direct product; cardinal property; $f$-homogeneity
Summary:
In this paper we deal with weakly homogeneous direct factors of lattice ordered groups. The main result concerns the case when the lattice ordered groups under consideration are archimedean, projectable and conditionally orthogonally complete.
References:
[2] R. Cignoli, I. M. I. D’Ottaviano and D. Mundici:
Algebraic Foundations of Many-Valued Reasoning. Kluwer Academic Publishers, Dordrecht, 2000.
MR 1786097
[3] P. Conrad:
Lattice Ordered Groups. Tulane University, 1970.
Zbl 0258.06011
[5] J. Jakubík:
Konvexe Ketten in $\ell $-Gruppen. Časopis pěst. mat. 83 (1958), 53–63.
MR 0104740
[6] J. Jakubík: Retract mappings of projectable $MV$-algebras. Soft Computing 4 (2000), 27–32.
[7] J. Jakubík: Direct product decompositions of MV-algebras. Czech. Math. J. 44 (1994), 725–739.
[10] R. S. Pierce:
Some questions about complete Boolean algebras. Proc. Sympos. Pure Math. 2 (1961), 129–140.
MR 0138570 |
Zbl 0101.27104
[12] F. Šik:
Über subdirekte Summen geordneter Gruppen. Czech. Math. J. 10 (1960), 400–424.
MR 0123626