Previous |  Up |  Next

Article

Keywords:
$MV$-algebras; similarity relation; quasi-reflective subcategory
Summary:
Two categories $\mathbb{Set}(\Omega )$ and $\mathbb{SetF}(\Omega )$ of fuzzy sets over an $MV$-algebra $\Omega $ are investigated. Full subcategories of these categories are introduced consisting of objects $(\mathop {{\mathrm sub}}(A,\delta )$, $\sigma )$, where $\mathop {{\mathrm sub}}(A,\delta )$ is a subset of all extensional subobjects of an object $(A,\delta )$. It is proved that all these subcategories are quasi-reflective subcategories in the corresponding categories.
References:
[1] Eytan, M.: Fuzzy sets: a topos-logical point of view. Fuzzy Sets and Systems 5 (1981), 47–67. DOI 10.1016/0165-0114(81)90033-6 | MR 0595953 | Zbl 0453.03059
[2] Goguen, J.A.: L-fuzzy sets. J. Math. Anal. Appli. 18 (1967), 145–174. DOI 10.1016/0022-247X(67)90189-8 | MR 0224391 | Zbl 0145.24404
[3] Higgs, D.: A category approach to Boolean-valued set theory. Manuscript, University of Waterloo, 1973.
[4] Höhle, U.: Presheaves over GL-monoids. Non-Classical Logic and Their Applications to Fuzzy Subsets, Kluwer Academic Publ., Dordrecht, New York (1995), 127–157. MR 1345643
[5] Höhle, U.: M-Valued sets and sheaves over integral, commutative cl-monoids. Applications of Category Theory to Fuzzy Subsets, Kluwer Academic Publ., Dordrecht, Boston (1992), 33–72. MR 1154568
[6] Höhle, U.: Classification of Subsheaves over GL-algebras. Proceedings of Logic Colloquium 98 Prague, Springer Verlag (1999), 238–261. MR 1743263
[7] Höhle, U.: Commutative, residuated l-monoids. Non-Classical Logic and Their Applications to Fuzzy Subsets, Kluwer Academic Publ. Dordrecht, New York (1995), 53–106. MR 1345641
[8] Höhle, U.: Monoidal closed categories, weak topoi and generalized logics. Fuzzy Sets and Systems 42 (1991), 15–35. DOI 10.1016/0165-0114(91)90086-6 | MR 1123574
[9] Močkoř, J.: Complete subobjects of fuzzy sets over $MV$-algebras. Czech. Math. J. 129 (2004), 379–392. DOI 10.1023/B:CMAJ.0000042376.21044.1a | MR 2059258
[10] Novák, V., Perfilijeva, I., Močkoř, J.: Mathematical principles of fuzzy logic. Kluwer Academic Publishers, Boston, Dordrecht, London, 1999. MR 1733839
[11] Ponasse, D.: Categorical studies of fuzzy sets. Fuzzy Sets and Systems 28 (1988), 235–244. DOI 10.1016/0165-0114(88)90031-0 | MR 0976664 | Zbl 0675.03032
Partner of
EuDML logo