Article
Keywords:
domination number; 5-regular graph; upper bounds
Summary:
Let $G=(V, E)$ be a simple graph. A subset $S\subseteq V$ is a dominating set of $G$, if for any vertex $u\in V-S$, there exists a vertex $v\in S$ such that $uv\in E$. The domination number, denoted by $\gamma (G)$, is the minimum cardinality of a dominating set. In this paper we will prove that if $G$ is a 5-regular graph, then $\gamma (G)\le {5\over 14}n$.
References:
[1] Y. Caro, Y. Roditty:
On the vertex-independence number and star decomposition of graphs. Ars Combin. 20 (1985), 167–180.
MR 0824858
[3] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater:
Fundamentals of domination in graphs. Marcel Dekker, New York, 1998.
MR 1605684
[6] O. Ore:
Theory of Graphs. Amer. Math. Soc. Colloq. Publ. Vol. 38. Amer. Math. Soc., Providence, 1962.
MR 0150753
[8] H. Xing: The upper bounds on domination number of 6-regular graphs. Manuscript.