Title:
|
On complemented subgroups of finite groups (English) |
Author:
|
Miao, Long |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
56 |
Issue:
|
3 |
Year:
|
2006 |
Pages:
|
1019-1028 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A subgroup $H$ of a group $G$ is said to be complemented in $G$ if there exists a subgroup $K$ of $G$ such that $G=HK$ and $H\cap K=1$. In this paper we determine the structure of finite groups with some complemented primary subgroups, and obtain some new results about $p$-nilpotent groups. (English) |
Keyword:
|
finite group |
Keyword:
|
$p$-nilpotent group |
Keyword:
|
primary subgroups |
Keyword:
|
complemented subgroups |
MSC:
|
20D10 |
MSC:
|
20D15 |
MSC:
|
20D20 |
MSC:
|
20D40 |
idZBL:
|
Zbl 1157.20323 |
idMR:
|
MR2261674 |
. |
Date available:
|
2009-09-24T11:40:54Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128127 |
. |
Reference:
|
[1] Z. Arad, M. B. Ward: New criteria for the solvability of finite groups.J. Algebra 77 (1982), 234–246. MR 0665175 |
Reference:
|
[2] A. Ballester-Bolinches, X. Guo: On complemented subgroups of finite groups.Arch. Math. 72 (1999), 161–166. MR 1671273, 10.1007/s000130050317 |
Reference:
|
[3] F. Gross: Conjugacy of odd order Hall subgroup.Bull. London Math. Soc. 19 (1987), 311–319. MR 0887768, 10.1112/blms/19.4.311 |
Reference:
|
[4] W. Guo: The Theory of Classes of Groups.Kluwer Academic Publishers, Beijing-New York-Dordrecht-Boston-London, 2000. Zbl 1005.20016, MR 1862683 |
Reference:
|
[5] W. Guo: The influence of minimal subgroups on the structure of finite groups.Southeast Asian Bulletin of Mathematics 22 (1998), 287–290. Zbl 0937.20008, MR 1684151 |
Reference:
|
[6] P. Hall: A characteristic property of soluble groups.J. London Math. Soc. 12 (1937), 188–200. Zbl 0016.39204, MR 1575073 |
Reference:
|
[7] B. Huppert: Endliche Gruppen I.Springer-Verlag, Berlin-Heidelberg-New York, 1967. Zbl 0217.07201, MR 0224703 |
Reference:
|
[8] O. H. Kegel: On Huppert’s characterization of finite supersoluble groups.In: Proc. Internat. Conf. Theory Groups, Canberra, 1965, , New York, 1967, pp. 209–215. Zbl 0178.02101, MR 0217183 |
Reference:
|
[9] O. H. Kegel: Produkte nilpotenter gruppen.Arch. Math. 12 (1961), 90–93. Zbl 0099.01401, MR 0133365, 10.1007/BF01650529 |
Reference:
|
[10] D. J. Robinson: A Course in the Theory of Groups.Springer-Verlag, Berlin-New York, 1993. MR 1261639 |
Reference:
|
[11] Y. Wang: Finite groups with some subgroups of Sylow subgroups c-supplemented.J. Algebra 224 (2000), 467–478. Zbl 0953.20010, MR 1739589 |
Reference:
|
[12] M. Xu: An Introduction to Finite Groups.Science Press, Beijing, 1999. (Chinese) |
Reference:
|
[13] Y. Zhang: The Structure of Finite Groups.Science Press, Beijing, 1982. (Chinese) |
. |