Previous |  Up |  Next

Article

Keywords:
reflexive Banach space; biorthogonal system; $\pi $-tensor product
Summary:
We characterize the reflexivity of the completed projective tensor products $X{\widetilde{\otimes }_\pi } Y$ of Banach spaces in terms of certain approximative biorthogonal systems.
References:
[1] J.  Diestel: Sequences and Series in Banach Spaces. Springer-Verlag, Berlin-Heidelberg-New York, 1984. MR 0737004
[2] A.  Grothendieck: Produits tensoriels topologiques et espaces nucléaires. Mem. Am. Math. Soc. 16 (1955). MR 0075539 | Zbl 0123.30301
[3] S.  Heinrich: On the reflexivity of the Banach space  $L(X,Y)$. Funkcional’nyi Analiz i ego Prilozheniya 8 (1974), 97–98. MR 0342991
[4] J. R.  Holub: Reflexivity of  $L(E,F)$. Proc. Amer. Math. Soc. 39 (1973), 175–177. MR 0315407 | Zbl 0262.46015
[5] H.  Jarchow: Locally Convex Spaces. Teubner-Verlag, Stuttgart, 1981. MR 0632257 | Zbl 0466.46001
[6] K.  John: $w^*$-basic sequences and reflexivity of Banach spaces. Czechoslovak Math. J 55 (2005), 677–681. DOI 10.1007/s10587-005-0054-5 | MR 2153091 | Zbl 1081.46017
[7] W. B.  Johnson, H. P.  Rosenthal: On w$^*$  basic sequences and their applications to the study of Banach spaces. Studia Math. 43 (1972), 77–92. DOI 10.4064/sm-43-1-77-92 | MR 0310598
[8] G.  Köthe: Topological Vector Spaces  II. Springer-Verlag, Berlin-Heidelberg-New York, 1984. MR 0551623
[9] A. Pełczyński: A note on the paper of I.  Singer “Basic sequences and reflexivity of Banach spaces”. Studia Math. 21 (1962), 371–374. DOI 10.4064/sm-21-3-370-374 | MR 0146636
[10] V.  Pták: Biorthogonal systems and reflexivity of Banach spaces. Czechoslovak Math.  J. 9 (1959), 319–325. MR 0110008
[11] W.  Ruckle: Reflexivity of  $L(E,F)$. Proc. Amer. Math. Soc. 34 (1972), 171–174. MR 0291777 | Zbl 0242.46018
[12] W. Ruess: Duality and geometry of spaces of compact operators. In: Functional Analysis: Surveys and Recent Results  III. Math. Studies  90, North Holland, , 1984. MR 0761373 | Zbl 0573.46007
[13] I.  Singer: Basic sequences and reflexivity of Banach spaces. Studia Math. 21 (1962), 351–369. DOI 10.4064/sm-21-3-351-369 | MR 0146635 | Zbl 0114.30903
[14] I.  Singer: Bases in Banach Spaces, Vol.  I. Springer-Verlag, Berlin-Heidelberg-New York, 1970. MR 0298399
Partner of
EuDML logo