Article
Keywords:
reflexive Banach space; biorthogonal system; $\pi $-tensor product
Summary:
We characterize the reflexivity of the completed projective tensor products $X{\widetilde{\otimes }_\pi } Y$ of Banach spaces in terms of certain approximative biorthogonal systems.
References:
[1] J. Diestel:
Sequences and Series in Banach Spaces. Springer-Verlag, Berlin-Heidelberg-New York, 1984.
MR 0737004
[2] A. Grothendieck:
Produits tensoriels topologiques et espaces nucléaires. Mem. Am. Math. Soc. 16 (1955).
MR 0075539 |
Zbl 0123.30301
[3] S. Heinrich:
On the reflexivity of the Banach space $L(X,Y)$. Funkcional’nyi Analiz i ego Prilozheniya 8 (1974), 97–98.
MR 0342991
[7] W. B. Johnson, H. P. Rosenthal:
On w$^*$ basic sequences and their applications to the study of Banach spaces. Studia Math. 43 (1972), 77–92.
DOI 10.4064/sm-43-1-77-92 |
MR 0310598
[8] G. Köthe:
Topological Vector Spaces II. Springer-Verlag, Berlin-Heidelberg-New York, 1984.
MR 0551623
[10] V. Pták:
Biorthogonal systems and reflexivity of Banach spaces. Czechoslovak Math. J. 9 (1959), 319–325.
MR 0110008
[12] W. Ruess:
Duality and geometry of spaces of compact operators. In: Functional Analysis: Surveys and Recent Results III. Math. Studies 90, North Holland, , 1984.
MR 0761373 |
Zbl 0573.46007
[14] I. Singer:
Bases in Banach Spaces, Vol. I. Springer-Verlag, Berlin-Heidelberg-New York, 1970.
MR 0298399