Article
Keywords:
partial monounary algebra; subalgebra; congruence; quotient algebra; subalgebra extension; ideal; ideal extension
Summary:
For a subalgebra ${\mathcal B}$ of a partial monounary algebra ${\mathcal A}$ we define the quotient partial monounary algebra ${\mathcal A}/{\mathcal B}$. Let ${\mathcal B}$, ${\mathcal C}$ be partial monounary algebras. In this paper we give a construction of all partial monounary algebras ${\mathcal A}$ such that ${\mathcal B}$ is a subalgebra of ${\mathcal A}$ and ${\mathcal C}\cong {\mathcal A}/{\mathcal B}$.
References:
[2] A. J. Hulin:
Extensions of ordered semigroup. Czechoslovak Math. J. 26 (1976), 1–12.
MR 0392740
[3] B. Jónsson:
Topics in universal algebra. Springer-Verlag, Berlin, 1972.
MR 0345895
[4] N. Kehayopulu and P. Kiriakuli:
The ideal extension of lattices. Simon Stevin 64 (1990), 51–60.
MR 1072483
[6] J. Martinez:
Torsion theory of lattice ordered groups. Czechoslovak Math. J. 25 (1975), 284–299.
MR 0389705
[7] M. Novotný:
Mono-unary algebras in the work of Czechoslovak mathematicians. Arch. Math. Brno 26 (1990), 155–164.
MR 1188275