Previous |  Up |  Next

Article

Keywords:
classical groups; vector spaces and linear maps; involutions; factorization of a linear map into a product of simple ones
Summary:
We define a linear map called a semiinvolution as a generalization of an involution, and show that any nilpotent linear endomorphism is a product of an involution and a semiinvolution. We also give a new proof for Djocović’s theorem on a product of two involutions.
References:
[1] D. Ž. Djocović: Product of two involutions. Arch. Math. XVIII (1967), 582–584. MR 0219550
[2] E. W.  Ellers, H.  Ishibashi: Bireflectionality of the orthogonal group over a valuation domain. J.  Algebra 149 (1992), 322–325. DOI 10.1016/0021-8693(92)90019-I | MR 1172432
[3] W. H.  Gustafson, P. R.  Halmos, and H.  Radjavi: Products of involutions. Linear Algebra Appl. 13 (1976), 157–162. DOI 10.1016/0024-3795(76)90054-9 | MR 0399284
[4] A. J.  Hahn, O. T.  O’Meara: The Classical Groups and K-Theory. Springer-Verlag, Berlin-Tokyo, 1989. MR 1007302
[5] R. Henstock: The General Theory of Integration. Clarendon Press, Oxford, 1991. MR 1134656 | Zbl 0745.26006
[6] I. N.  Herstein: Topics in Algebra (2nd ed.). John Wiley and Sons, New York, 1964. MR 0171801
[7] H. Ishibashi: Decomposition of isometries of  $U_n(V)$ over finite fields into simple isometries. Czechoslovak Math.  J. 31 (1981), 301–305. MR 0611082
[8] H.  Ishibashi: Involutary expressions for elements in  $GL_n(Z)$ and $SL_n(Z)$. Linear Algebra Appl. 219 (1995), 165–177. MR 1327398
[9] H.  Ishibashi: Groups generated by symplectic transvections over local rings. J.  Algebra 218 (1999), 26–80. DOI 10.1006/jabr.1998.7837 | MR 1704675 | Zbl 0984.20031
[10] T. J.  Laffey: Products of matrices. In: Generators and Relations in Groups and Geometries. Proc. NATO ASI  (C), A.  Barlotti et al. (eds.), Kluwer Academic, Dordrecht-London, 1991, pp. 95–123. MR 1206912 | Zbl 0729.15012
[11] S.  Lang: Algebra (3rd ed.). Addison Wesley, Tokyo, 1993. MR 0197234
[12] A. R.  Sourour: A factorization theorem for matrices. Linear Multilinear Alg. 19 (1986), 141–147. MR 0846549 | Zbl 0591.15008
[13] B.  Zheng: Decomposition of matrices into commutators of involutions. Linear Algebra Appl. 347 (2002), 1–7. DOI 10.1016/S0024-3795(01)00597-3 | MR 1899878 | Zbl 1004.20026
Partner of
EuDML logo