Previous |  Up |  Next

Article

Keywords:
hypergraph; weak degree domination number; independent domination number; graph theory
Summary:
In this paper we extend the notion of weak degree domination in graphs to hypergraphs and find relationships among the domination number, the weak edge-degree domination number, the independent domination number and the independence number of a given hypergraph.
References:
[1] B. D.  Acharya: Contributions to the theories of hypergraphs, graphoids and graphs. PhD.  Thesis, Indian Institute of Technology, Bombay, 1975.
[2] B. D.  Acharya: Separability and acyclicity in hypergraphs. In: Proceedings of the Symposium on Graph Theory. ISI Lecture Notes in Mathematics, No. 4 (A. R.  Rao, ed.), The Macmillan Comp., Calcutta, 1979, pp. 65–83. MR 0553933 | Zbl 0483.05051
[3] B. D.  Acharya: On the cyclomatic number of a hypergraph. Discrete Mathematics 27 (1979), 111–116. DOI 10.1016/0012-365X(79)90103-1 | MR 0537468 | Zbl 0407.05066
[4] B. D.  Acharya, M.  Las Vergnas: Hypergraphs with cyclomatic number zero, triangulated graphs and an inequality. J.  Combinatorial Theory, Ser.  B 33 (1982), 52–56. DOI 10.1016/0095-8956(82)90056-9 | MR 0678170
[5] B. D.  Acharya: Full sets in hypergraphs. Sankhya: The Indian J.  Statistics. Special Vol. 54 (1992), 1–6. MR 1234671 | Zbl 0882.05099
[6] B. D.  Acharya: Strongly Helly hypergraphs. J.  Ramanujan Math. Soc. 11 (1996), 139–144. MR 1429306 | Zbl 0867.05050
[7] B. D.  Acharya, Purnima Gupta: A direct inductive proof of a conjecture due to E.  Sampathkumar and L.  Pushpa Latha. Nat. Acad. Sci.-Letters 21 (1998), 84–90. MR 1639204
[8] C.  Berge: Graphs and Hypergraphs. North-Holland Elsevier Publ., Amsterdam, 1973. MR 0357172 | Zbl 0254.05101
[9] C.  Berge: Hypergraphs. North-Holland Elsevier Publ., Amsterdam, 1989. MR 1013569 | Zbl 0674.05001
[10] F.  Dacar: Cyclicity in hypergraphs. Discrete Mathematics 182 (1998), 53–67. DOI 10.1016/S0012-365X(97)00133-7 | MR 1603720
[11] A.  Gyarfas, M. S.  Jacobson, A. E.  Kezdy, and J.  Lehel: Odd cycles and $\theta $-cycles in hypergraphs. “Paul Erdös and his Mathematics: Research Communications”, Janos Bolyayi Mathematical Society, Budapest, 1990, pp. 96–98. MR 1901889
[12] J. H.  Hattingh, R. C.  Laskar: On weak domination in graphs. Ars Comb. 49 (1998), 205–216. MR 1633119
[13] T. W.  Haynes, S. T.  Hedetniemi, and P. J.  Slater: Fundamentals of Domination in Graphs. Marcel Dekker, New York, 1998. MR 1605684
[14] M.  Lewin: On hypergraphs without significant cycles. J.  Combinatorial Theory, Ser.  B 20 (1976), 80–83. DOI 10.1016/0095-8956(76)90070-8 | MR 0429653 | Zbl 0335.05135
[15] D.  Rautenbach: Bounds on the weak domination number. Australas. J. Comb. 18 (1998), 245–251. MR 1658286 | Zbl 0914.05041
[16] E.  Sampathkumar, L.  Pushpa Latha: Strong weak domination and domination balance in a graph. Discrete Mathematics 161 (1996), 235–242. DOI 10.1016/0012-365X(95)00231-K | MR 1420536
[17] D. B.  West: Introduction to Graph Theory. Prentice Hall, New Jersey, 1996. MR 1367739 | Zbl 0845.05001
Partner of
EuDML logo