Article
Keywords:
spectral radius; Laplacian eigenvalue; strongly regular graph
Summary:
Let $G$ be a graph with $n$ vertices, $m$ edges and a vertex degree sequence $(d_1, d_2, \dots , d_n)$, where $d_1 \ge d_2 \ge \dots \ge d_n$. The spectral radius and the largest Laplacian eigenvalue are denoted by $\rho (G)$ and $\mu (G)$, respectively. We determine the graphs with \[ \rho (G) = \frac{d_n - 1}{2} + \sqrt{2m - nd_n + \frac{(d_n +1)^2}{4}} \] and the graphs with $d_n\ge 1$ and \[ \mu (G) = d_n + \frac{1}{2} + \sqrt {\sum _{i=1}^n d_i (d_i-d_n) + \Bigl (d_n - \frac{1}{2} \Bigr )^2}. \] We also present some sharp lower bounds for the Laplacian eigenvalues of a connected graph.
References:
[1] R. A. Brualdi:
From the Editor in Chief. Linear Algebra Appl. 360 (2003), 279–283.
MR 1728495
[2] D. M. Cvetkovič, M. Doob and H. Sachs:
Spectra of Graphs. DVW, Berlin, 1980.
MR 0572262
[3] M. Fiedler:
Algebraic conectivity of graphs. Czechoslovak Math. J. 23 (1973), 298–305.
MR 0318007
[7] R. Merris:
Laplacian matrices of graphs: a survey. Linear Algebra Appl. 197-198 (1994), 143–176.
MR 1275613 |
Zbl 0802.05053
[9] J. Shu, Y. Hong and W. Kai:
A sharp upper bound on the largest eigenvalue of the Laplacian matrix of a graph. Linear Algebra Appl. 347 (2002), 123–129.
MR 1899886
[11] X. Zhang and J. Li:
On the $k$-th largest eigenvalue of the Laplacian matrix of a graph. Acta Mathematicae Applicatae Sinica 17 (2001), 183–190.
DOI 10.1007/BF02669571 |
MR 1877099