Previous |  Up |  Next

Article

Title: On orthogonal Latin $p$-dimensional cubes (English)
Author: Trenkler, Marián
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 3
Year: 2005
Pages: 725-728
Summary lang: English
.
Category: math
.
Summary: We give a construction of $p$ orthogonal Latin $p$-dimensional cubes (or Latin hypercubes) of order $n$ for every natural number $n\ne 2,6$ and $p \ge 2$. Our result generalizes the well known result about orthogonal Latin squares published in 1960 by R. C. Bose, S. S. Shikhande and E. T. Parker. (English)
Keyword: Latin $p$-dimensional cube
Keyword: Latin hypercube
Keyword: Latin squares
Keyword: orthogonal
MSC: 05B15
idZBL: Zbl 1081.05016
idMR: MR2153097
.
Date available: 2009-09-24T11:27:10Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128017
.
Reference: [1] R. C. Bose, S. S. Shrikhande and E. T. Parker: Further results on the construction of mutually orthogonal Latin squares and the falsity of Euler’s conjecture.Canad. J.  Math. 12 (1960), 189–203. MR 0122729, 10.4153/CJM-1960-016-5
Reference: [2] J. Dénes and A. D. Keedwel: Latin Squares and Their Applications.Akadémiai Kiadó, Budapest, 1974. MR 0351850
Reference: [3] G. L. Mullen: Orthogonal hypercubes and related designs.J. Stat. Plann. Inference 73 (1998), 177–188. Zbl 0935.62089, MR 1655219, 10.1016/S0378-3758(98)00059-7
Reference: [4] M. Trenkler: Magic $p$-dimensional cubes of order $n \lnot \equiv 2\hspace{4.44443pt}(\@mod \; 4)$.Acta Arithmetica 92 (2000), 189–194. MR 1750318
.

Files

Files Size Format View
CzechMathJ_55-2005-3_15.pdf 262.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo