Previous |  Up |  Next

Article

Keywords:
primitive lattice points; lattice point discrepancy; planar domains
Summary:
Let $Q(u, v)$ be a positive definite binary quadratic form with arbitrary real coefficients. For large real $x$, one may ask for the number $B(x)$ of primitive lattice points (integer points $(m, n)$ with $\gcd (M,n) =1$) in the ellipse disc $Q(u, v)\le x$, in particular, for the remainder term $R(x)$ in the asymptotics for $B(x)$. While upper bounds for $R(x)$ depend on zero-free regions of the zeta-function, and thus, in most published results, on the Riemann Hypothesis, the present paper deals with a lower estimate. It is proved that the absolute value or $R(x)$ is, in integral mean, at least a positive constant $c$ time $x^{1/4}$. Furthermore, it is shown how to find an explicit value for $c$, for each specific given form $Q$.
References:
[1] P. Bleher: On the distribution of the number of lattice points inside a family of convex ovals. Duke Math. J. 67 (1992), 461–481. MR 1181309 | Zbl 0762.11031
[2] J. B. Conrey: More than two fifth of the zeros of the Riemann zeta-function are on the critical line. J. Reine Angew. Math. 399 (1989), 1–26. MR 1004130
[3] H. Davenport and H. Heilbronn: On the zeros of certain Dirichlet series  I. J. London Math. Soc. 11 (1936), 181–185. MR 1574345
[4] H. Davenport and H. Heilbronn: On the zeros of certain Dirichlet series  II. J. London Math. Soc. 11 (1936), 307–312. MR 1574931
[5] I. S. Gradshteyn and I. M. Ryzhik: Table of Integrals, Series, and Products, 5th ed. A. Jeffrey (ed.), Academic Press, San Diego, 1994. MR 1243179
[6] M. N. Huxley: Exponential sums and lattice points  II. Proc. London Math. Soc. 66 (1993), 279–301. MR 1199067 | Zbl 0820.11060
[7] M. N. Huxley: Area, Lattice Points, and Exponential Sums. LMS Monographs, New Ser. Vol.  13. Clarendon Press, Oxford, 1996. MR 1420620
[8] M. N. Huxley: Exponential sums and lattice points  III. Proc. London Math. Soc. 87 (2003), 591–609. MR 2005876 | Zbl 1065.11079
[9] M. N. Huxley and W. G. Nowak: Primitive lattice points in convex planar domains. Acta Arithm. 76 (1996), 271–283. DOI 10.4064/aa-76-3-271-283 | MR 1397317
[10] A. Ivić: The Riemann zeta-function. Wiley & Sons, New York, 1985. MR 0792089
[11] E. Krätzel: Lattice Points. Kluwer Academic Publishers, Berlin, 1988. MR 0998378
[12] E. Krätzel: Analytische Funktionen in der Zahlentheorie. Teubner, Wiesbaden, 2000. MR 1889901
[13] N. Levinson: More than one third of the zeros of Riemann’s zeta-function are on $\sigma =\frac{1}{2}$. Adv. Math. 13 (1974), 383–436. DOI 10.1016/0001-8708(74)90074-7 | MR 0564081
[14] W. Müller: Lattice points in convex planar domains: Power moments with an application to primitive lattice points. In: Proc. Number Theory Conf., Vienna  1996, W. G. Nowak, J. Schoißengeier (eds.), , Vienna, 1996, pp. 189–199.
[15] W. G. Nowak: An $\Omega $-estimate for the lattice rest of a convex planar domain. Proc.Roy. Soc. Edinburgh, Sect.  A 100 (1985), 295–299. DOI 10.1017/S0308210500013834 | MR 0807708 | Zbl 0582.10033
[16] W. G. Nowak: On the mean lattice point discrepancy of a convex disc. Arch. Math. (Basel) 78 (2002), 241–248. DOI 10.1007/s00013-002-8242-0 | MR 1888708 | Zbl 1013.11065
[17] J. Pintz: On the distribution of square-free numbers. J. London Math. Soc. 28 (1983), 401–405. MR 0724708 | Zbl 0532.10025
[18] H. S. A. Potter: Approximate equations for the Epstein zeta-function. Proc. London Math. Soc. 36 (1934), 501–515. Zbl 0008.30001
[19] A. Selberg: On the Zeros of Riemann’s zeta-function. Skr. Norske Vid. Akad., Oslo, 1943. MR 0010712 | Zbl 0028.11101
[20] E. C. Titchmarsh: The Theory of the Riemann zeta-function, 2nd ed. Clarendon Press, Oxford, 1986. MR 0882550 | Zbl 0601.10026
[21] M. Voronin: On the zeros of zeta-functions of quadratic forms. Trudy Mat. Inst. Steklova 142 (1976), 135–147. MR 0562285 | Zbl 0432.10009
[22] Wolfram Research, Inc., Mathematica 4.1. Champaign, 2001.
[23] J. Wu: On the primitive circle problem. Monatsh. Math. 135 (2002), 69–81. DOI 10.1007/s006050200006 | MR 1894296 | Zbl 0994.11035
[24] W. Zhai, X. D. Cao: On the number of coprime integer pairs within a circle. Acta Arithm. 90 (1999), 1–16. MR 1708625
[25] W. Zhai: On primitive lattice points in planar domains. Acta Arithm. 109 (2003), 1–26. DOI 10.4064/aa109-1-1 | MR 1980849 | Zbl 1027.11075
Partner of
EuDML logo