Article
Keywords:
bounded lattice; lattice ordered group; generalized cardinal property; homogeneity
Summary:
We denote by $K$ the class of all cardinals; put $K^{\prime }= K \cup \lbrace \infty \rbrace $. Let $\mathcal C$ be a class of algebraic systems. A generalized cardinal property $f$ on $\mathcal C$ is defined to be a rule which assings to each $A \in \mathcal C$ an element $f A$ of $K^{\prime }$ such that, whenever $A_1, A_2 \in \mathcal C$ and $A_1 \simeq A_2$, then $f A_1 =f A_2$. In this paper we are interested mainly in the cases when (i) $\mathcal C$ is the class of all bounded lattices $B$ having more than one element, or (ii) $\mathcal C$ is a class of lattice ordered groups.
References:
[2] P. Conrad:
Lattice Ordered Groups. Tulane University, 1970.
Zbl 0258.06011
[3] E. K. van Douwen: Cardinal functions on compact $F$-spaces and weakly complete Boolean algebras. Fundamenta Math. 113 (1982), 235–256.
[4] E. K. van Douwen:
Cardinal functions on Boolean spaces. In: Handbook of Boolean Algebras, J. D. Monk and R. Bonnet (eds.), North Holland, Amsterdam, 1989, pp. 417–467.
MR 0991599
[5] J. Jakubík:
Konvexe Ketten in $\ell $-Gruppen. Časopis pěst. mat. 84 (1959), 53–63.
MR 0104740
[8] J. D. Monk:
Cardinal functions on Boolean algebras. In: Orders, Description and Roles, M. Pouzet and D. Richard (eds.), North Holland, Amsterdam, 1984, pp. 9–37.
MR 0779843 |
Zbl 0557.06009
[9] R. S. Pierce:
Some questions about complete Boolean algebras. Proc. Symp. Pure Math., Vol. II, Lattice Theory, Amer. Math. Soc., Providence, 1961.
MR 0138570 |
Zbl 0101.27104
[10] F. Šik:
Über subdirekte Summen geordneter Gruppen. Czechoslovak Math. J. 10 (1960), 400–424.
MR 0123626