[2] R. A. Gordon:
The Integrals of Lebesgue. Denjoy, Perron, and Henstock, Graduate Studies in Mathematics Volume 4, AMS, 1994.
MR 1288751 |
Zbl 0807.26004
[3] J. Jarník and Kurzweil:
Perron-type integration on $n$-dimensional intervals and its properties. Czechoslovak Math. J. 45 (120) (1995), 79–106.
MR 1314532
[4] J. Kurzweil:
On multiplication of Perron integrable functions. Czechoslovak Math. J. 23 (98) (1973), 542–566.
MR 0335705 |
Zbl 0269.26007
[5] J. Kurzweil and J. Jarník:
Perron-type integration on $n$-dimensional intervals as an extension of integration of stepfunctions by strong equiconvergence. Czechoslovak Math. J. 46 (121) (1996), 1–20.
MR 1371683
[7] Lee Peng Yee and Rudolf Výborný:
The integral: An Easy Approach after Kurzweil and Henstock. Australian Mathematical Society Lecture Series 14, Cambridge University Press, 2000.
MR 1756319
[8] Lee Tuo Yeong, Chew Tuan Seng and Lee Peng Yee:
Characterisation of multipliers for the double Henstock integrals. Bull. Austral. Math. Soc. 54 (1996), 441–449.
DOI 10.1017/S0004972700021857 |
MR 1419607
[9] Lee Tuo Yeong:
Multipliers for some non-absolute integrals in the Euclidean spaces. Real Anal. Exchange 24 (1998/99), 149–160.
MR 1691742
[10] G. Q. Liu:
The dual of the Henstock-Kurzweil space. Real Anal. Exchange 22 (1996/97), 105–121.
MR 1433600
[12] Piotr Mikusiński and K. Ostaszewski: The space of Henstock integrable functions II. In: New integrals. Proc. Henstock Conf., Coleraine / Ireland, P. S. Bullen, P. Y. Lee, J. L. Mawhin, P. Muldowney and W. F. Pfeffer (eds.), 1988.
[14] S. Saks:
Theory of the Integral, second edition. New York, 1964 63.0183.05.
MR 0167578
[16] W. H. Young: On multiple integration by parts and the second theorem of the mean. Proc. London Math. Soc. 16 (1918), 273–293.