Previous |  Up |  Next

Article

Keywords:
oscillation; neutral differential equations; positive and negative coefficients
Summary:
In this paper, oscillattion and nonoscillation criteria are established for neutral differential equations with positive and negative coefficients. Our criteria improve and extend many results known in the literature.
References:
[1] T. A.  Chanturia: Integral criteria for the oscillation of higher order differential equations. Differencialnye Uravnenija 16 (1980), 470–482.
[2] Q. Chuanxi and G.  Ladas: Oscillation in differential equations with positive and negative coefficients. Canad. Math. Bull. 33 (1990), 442–450. DOI 10.4153/CMB-1990-072-x | MR 1091349
[3] El. M.  Elabbasy, A. S.  Hegazi and S. H.  Saker: Oscillation of solutions to delay differential equations with positive and negative coefficients. Electron. J. Differential Equations 13 (2000), 1–13. MR 1745042
[4] L. H.  Erbe, Q.  Kong and B. G.  Zhang: Oscillation Theory for Functional Differential Equations. Marcel Dekker, New York, 1995. MR 1309905
[5] K.  Farrell, E. A.  Grove and G.  Ladas: Neutral delay differential equations with positive and negative coefficients. Appl. Anal. 27 (1988), 181–197. DOI 10.1080/00036818808839732 | MR 0922777
[6] I.  Gyori and G.  Ladas: Oscillation Theory of Delay Differential Equations with Applications. Clarendon Press, Oxford, 1991. MR 1168471
[7] E.  Hille: Non-oscillation theorems. Trans. Amer. Math. Soc. 64 (1948), 234–252. DOI 10.1090/S0002-9947-1948-0027925-7 | MR 0027925 | Zbl 0031.35402
[8] B.  Li: Oscillation of first order delay differential equations. Proc. Amer. Math. Soc. 124 (1996), 3729–3737. DOI 10.1090/S0002-9939-96-03674-X | MR 1363175 | Zbl 0865.34057
[9] S. G.  Ruan: Oscillation for first order neutral differential equations with positive and negative coefficients. Bull. Austral. Math. Soc. 43 (1991), 147–152. DOI 10.1017/S0004972700028872 | MR 1086728
[10] J. H.  Shen and Z. C.  Wang: Oscillation and nonoscillation for a class of nonlinear neutral differential equations. Differential Equations Dynam. Systems 4 (1994), 347–360. MR 1386279
[11] X. H.  Tang and J. H.  Shen: Oscillation and existence of positive solution in a class of higher order neutral differential equations. J.  Math. Anal. Appl. 213 (1997), 662–680. DOI 10.1006/jmaa.1997.5567 | MR 1470876
[12] X. H. Tang and J. S.  Yu: On the positive solutions of a kind of neutral differential equations with positive and negative coefficients. Acta Math. Sinica 42 (1999), 795–802. MR 1766655
[13] J. S.  Yu and Z. C.  Wang: Some further results on oscillation of neutral differential equations. Bull. Austral. Math. Soc. 46 (1992), 149–157. DOI 10.1017/S0004972700011758 | MR 1170449
[14] J. S.  Yu and J. R.  Yan: Oscillation in first order neutral differential equations with “integrally small” coefficients. J.  Math. Anal. Appl. 187 (1994), 361–370. DOI 10.1006/jmaa.1994.1362 | MR 1297030
[15] B. G.  Zhang and B.  Yang: New approach of studying the oscillation of neutral differential equations. Funkcial. Ekvac. 41 (1998), 79–89. MR 1627357
[16] B. G.  Zhang and J. S.  Yu: Oscillation and nonoscillation for neutral differential equations. J.  Math. Anal. Appl. 172 (1993), 11–23. DOI 10.1006/jmaa.1993.1002 | MR 1199490
Partner of
EuDML logo